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SUPPORTING ANALYSIS A

INTERNAL WAVE WAKES OF A BODY MOVING IN A STRATIFIED FLUID

J.B. Keller
Courant Institu.te of Mathematical Sciences
New York University

W.H. Munk
Institute for Geophysics and Planetary Physics
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I. INTRODUCTION

When a ship travels with constant velocity along the surface of
a liquid, it creates behind it a wake which is called a "ship wave"
pattern. A similar pattern is produced by a submerged object moving
parallel to the surface. The usual analyses of such patterns apply
to liquids of uniform density in which only one type of propagating
wave, called a surface wave, is possible. We shall consider ship
wave patterns in horizontally stratified liquids in which one or more ¥
propagating internal waves exist in addition to the surface wave.
Keller and Levy (Ref. 1) have shown that in any such liquid the snip
wave pattern is a superposition of separate patterns, one for each
propagating internal or surface wave. They have also obtained formulas
for the wave height and particle velocity as functions of position
throughout the pattern. From these formulas cne can see that for a
submerged object the patterns corresponding to some of the internal
waves can have larger amplitudes than that corresponding to the sur-
face wave. Therefore we shall examine the internal wave patterns in
detail for a simplified, but realistic density profile in which in-
finitely many propagating internal waves occur. Previously Hudimac
(Ref. 2) studied the special case of a two-layer fluid in which just
onz propagating internal wave exists.
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II. WAKE GEOMETRY

To describe the wake of a horizontally moving object, we replace

the object by a point which we call the source. We introduce cartesian

coordinates in the horizontal X,z plane containing the source, with

the x-axis along the path of the source and the origin at the position

of the source at time t = 0, If the speed of the source is -v then
the coordinates xo(t'), zo(t') of the source at time t’ are

xo(t') = .vt', zo(t') =0 (2.1)

We wish to determine the wake corresponding to waves of a partic-
ular type emitted by the source, i.e., to the surface wave or to the
n-th internal wave. We suppose that the source emits waves of this
type with all frequencies w and that the wave has a definite propaga-
tion constant or wave number k. It is converient to express « as a

function of k,
w = w(k) (2.2)

The functional relation (2.2) is determined by the density profile,
and will be considered later.

Let us consider the phase -¢(x,z,k,T) at the point x,z at time
t = 0 of the wave of wave number k emitted by the source at time -7,
T 2 0. If the wave is emitted at phase zerc then

-p(x,2, k,7) = kr - w7 (2.3)

-
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Here r is defined by
1
r = {[x-xo(-'r)}2 + z2}§ (2.4)

We seek those values of k and 7t for which ¢ is stationary. This
requirement yields the the two conditions®

0=-¢ = kr, - w (2.6)
From these equations we find that

/T 2 K (2.7)

]
Q
Hil
<3

= w/k, (2.8)

]
[p]

v(xo-x)/r

Here we have introduced the group velocity c_ and the phase velocity
¢ defined by the last equalities in (2.7) and (2.8). Equation (2.7)
shows that the wave from the source Xo(-T),O travels to X,z at the
group velocity cg. Equation (2.8) shows that the trace on the x-axis,
of the straight line perpencdicular te the ray from XO(—T),O to X,2,
travels with the source velocity -v,.

The two equations (2.7), (2.8) determine the values of k and T
which make ¢ stationary. When these values are used in (2.3), (2.3)
will yield the stationary value of the phase at each point x,z. These
results are just Equations (11.5) and (11.€) of Ref. 1, which we have
redcrived in a simpler way. We now use (2.7) to write T = r/cg and
(2.8) to write w = ke. Then we can rewrite (2.3) as

-¢ = kr(1 - c/cg) (2.9)

*Letter subscripts denote partial differentiation.
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Next (2.8) and (2.4) yield, if ¢ < v,
XX = rc/v, z = (1 ~c2/v2)% (2.10)
From (2.1 and (2.7),

X = vp/c

o (2.11)

g

Let us now eliminate Xq from (2.10) by means of (2.11) and then
e2liminate r by means of (2.9). Thus we obtain

2 2
1 - (cc_/v©) C_4f1 - (c/v)
£ = (gv/k) [ g ], z = (¢/k) [ g\l ] (2.12)

c - c -2cC
g g
Thus if ¢ £ v, (2.12) is the parametric equation of the wavefront ¢ =
constant, where ¢ is the stationary value of the phase and k is the
parameter.

=<3
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ITI. 1ONG WAVES AND THE FAR WAKE

Suppose that for k small, the function w(k) in (2.2) has the pow-
er series expansion

2 3

W= wlk - 0k - wkT L (3.1)
Then

c=w - w2k + ... (3.2)

cg =0, - 2w2k + o (3.3)

Now (2.12) becomes

-9 )
oy [1-v (wl_m2k+...)(wl-2w2k+...)]
k

X = »
w2k + 2w3k - e
2 2
w 3w, w 2w 2w w
= (¢v/k2w2) (1 --—%)+< 122 -3 3 + 21 %)k + eee (3.4)
v v 2 v w2
r, 1
(wl-2w2k+...)(l-x-2w§+2v"2wlw2k+...)
z = (¢v/k) >
w2k. + 2w3k - e s 0
2 wi L 2w2 wlw2 2w3
=(¢w/kw)(l-—1)2 l-( - + )k+... (3.5
S DR I

It is clear from (3.4) -and (3.5) that for long waves, for which k is
small, both x and z are large.

v

sl d




To eliminate k we solve (3.4) for k and substitute into (3.5),
obtaining

W, X 2(ow vx)?2
Z = 212%- 5 22 +oa (3.6)
(v -~y VT - oy

f w(k) is not analytic around k = 0, (3.1) is not valid and
therefore (3.6} does not apply. This is the case for ordinary surface
waves in water of constant density and infinite depth, since for them
w(k) = (gk)%. Then (2.12) becomes

1
_ _2¢v ( __9___) _¢( 9)5
X = 1- , z2=efl - (3.7)
(;;;% 202k 3 ;5;

From (3.7) we see that k must be restricted to the range k > g/v2 in
order that z be real, so a smali-k expansion is not applicable in this
case.,

Sown )
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IV. SHORT WAVES AND THE NEAR WAKE

For short wavas or large k, we assume that w(k) has the asympto-
tic expansion

k) = N- Nk - nxd oL, (4.1)
2 4
Then c = Nkt - Nzk"5 - N4k-5 + o (4.2)
e = oNK D 4+ 4N KO + (4.3)
g 2 4 o e & * -

Upon using (4.2) and (4.3) in (2.12) and (2.13) we obtain

[i-v'2(Nk’l-N2k'3 - ...)(2N2k‘3 + ...)]

X = (¢V/k) -3 =3
Nk o hnd 3N2k - e e e
N, L,
= (¢V/N) 14 "—N— k- [ . (4-4)
- - - - - - R
(20, AN + L) (v 282~ 24 0y 2NN2k 0
z = (¢/k) — 3
Nk « 3N K~ - ...
2
. oN 2 3N,
_ 3 4 N 2) -2 ;
= (2¢N2/Nk )[l+(ﬁ; -;;-Q'f'T)k + ....] (4.5)

Solving (4.4) for k and substituting the result into (4.5) yields

2
- 2N Ppv\3/2 -
V4 -— m———— T (X - ) + .6 (4:6)
(97v3N2¢)5 N

9
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From (4.6) we see that each wavefront ¢ = constant has a cusp at x =
¢v/N on the path z = 0.

In the case of ordinary surface waves in water of constant density
and finite or infinite depth, (4.1) does not hold so neither does (4.6).
For infinite depth (3.7) yields for k large,

o=+ gx2/4vz¢ + oeee (4.7)
Then all wavefronts enter the origin x = 0 on the path z = G. The

result (4.7) &lso holds for the finite depth case when the density is
constant.

10
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- V. EXAMPLE
E !
i - A. THE DISPERSION BQUATION
- Let v(y) be the y dependent factor of the vertical compcnent of
é - fluid velocity in a time harmonic wave of angular frequency @ and ;
. wavenunber k in a fluid of density po(y) and depth h. Then v(y) 5
satisfies the equations
1 .
§ v. ~gWv + k%N -1)v=0,02y2-h (5.1)
3 - yy y
- v,(0) = k2w 2gv(0) (5.2)
. v(-h) = 0. (5.3)
] 2 . ". 1 o1t
(Ref. 1, Egs. 5.14 - 5.18). Here N°(y) is the Vaisala frequency de-
Tt fined by
' N% = (-g)(p_), /o (5.4)
2 ne o'y o *
This problem has nontrivial solutions only if k2 is an eigenvalue.
! .
E } We shall take for po(y) ths following function
% OO(Y) = 0q > 0=2y=2 Yl
: 2 ,
= py expL(N°/g)(y;-y)] s y3 2 7 2 3, (5.5)

- 2
Py = py expl(N°/9)(y;-y5)1 5 ¥y, 2y 2 -h

11
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The layer between 2 and Yo is the thermocline, within which N2 is
constant, and outside it N2 = 0. Now the coefficients in (5.1) are

piece-wise constant sc (5.1) can be solved explicitly. If we ignore

-1,2..

the term g ~N Vy in (5.1), the solution is simply

v(y) = sinh (ky + a) 0zyz=zy,
v(y) = C cos kvy + D sin kvy Yy 2 Y %Y,
v(y) = B sinh k(y + h) Yo 2y 2 -h
Here v is defined by
W= (Nw?) -2

Condition (5.3) is satisfied by (5.8), while (5.2) yields

tanh o = 0°/kg

(5.6)
(5.7)
(5.8)

(5.9)

(5.10)

At vq and y, both v and vy must be continuous. This requirement

vields the four conditions

H

C cos kvyl + D sin kvyl sinh (ky1 + a)

C cos kvy? + D sin kvy, = B sinh k(y2 + h)
-v C sin kvyl + vD cos kvyl = cosh (kyl + a)

-v C sin kvy2 + vD cos kVy2 = B cosh k(y2 + h)
We now combine (5.11) and (5.13) to obtain
[C cos kvy,+D sin kvyl]cosh(kyl+a)
+v[C sin kvy,-D cos kvyl]sinh(kyl+a) = 0.
Similarly we get from (5.12) and (5.14)

12

(5.11)
(5.12)
(5.13)
(5.14)

(5.15)
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[C cos kvy,+D sin kvy,Jcosh k{y,+h)

+v[C sin kvy,-D cos kvyz]sinh k(yyth) = 0 (5.16)

In order for (5.15) and (5.16) to have nontrivial solutions for C and
D, the determipant of the coefficient matrix must vanish. This yields
the dispersion equation

2
tan kv(yl-yz)[l+v"tanh (kyy+e) tanh k(y2+h)]

= v{tanh (kyq+a)-tanh k(y2+h)] (5.17)

B. FAR WAKE

Let us examine (5.17) for k small, tentatively assuming that
w ~ ke(0) as k tends to zero. Then {5.9) yields v ~ N/kc(0), (5.10)
yields o ~ kc2/g end (5.17) becomes at k = 0

Nc“l[yl-y2~h+(02/g)]
1+ N2c”2[yl+(02/9)](y2+h)

tan [(N/C)(yl-yz)] = (5.18)

This +s an equation for c(0) which has infinitely many solutions which
we shall call cn(O), n=0,1,2,... . To describe them we write

Ns w

S=y) -9, (5.20)

Then (5.18) becomes the following transcendental equation for a,:

2
s[(s-h)(nn+an) + 5?5223;7]

tan a_ =
Q¥N252/9]<y2+h)

n

-n/2<a <mnu/2 5.21
52+[yl(nn+an) ? / n /2« )

13
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For n large (5.21) yields

- s(h-s)
<':1r1 W (5.22)

If h >> s and h >> |y,|, (5.22) becomes

S

an ~ - nn_yl F] n >> l (3.23)
For n = 0, (5.21) becomes 2 a
N°s“
s[(s-h)a0 + 5, ]
tan a = 5 (5.24)
s + (ylag + EL{;-)(y2+h)

If |y2| << h and N2s/g << 1, we can replace tan 8, by &, in (5.24).
The resulting biquadratic equation has zs its two positive solutions

- Ns

a, ~——x (5.25)
°  (gh)
&t~ (SF (5,26
o -yl

~r
%)
=3
~
[
5
o
~ s

Let us now usez the results (5.23), (5.25), and {5.26

and introduce the effective gravity g’ defined by

g =Ns~-—p—;——-g‘ (5.27)
Then (5.19) yields
¢;(0) ~ (gh)¥ (5.28)
e (0) ~ (g'lyli)% (5.29)
14
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1
62 -
¢, (0) ~ii—§L (1 - -;—Tb-~-«> , no>> (5.30)

3ince w ~ ke, it follews that cg(o) = ¢{0) for each mode.

(@]

YEAK WRK

m

Now we srtall examine (5.17) for k large, assuming that w ~ N as

k tends to infinity. Then (5.17) Lecomes
tan kvs ~ -2v (5.31)
Since v is small, the sclutions of (5,31) are
kvs ~ = . 2V (5.32)

By using the definition (5.9) c¢f v we obtain from (5.32)

- nn \2.-% _ of no\2, -2 ;
NL1+('R—S—_;§) ] N1 - ﬁm J N - N2k - ... (5.33)

W =
Here N2 = (nﬂ/s)QN. Therefore from (5.33) we obtain
_w N N {nm)2
CERYR T K (ks+2) (5.34)
dw Ns(rm)2
C,TER "~ T3 (5.35)
> (ks+2)

These results hold only for n # 0 as we see from (5.32).

D. SURFACE WAVES

If w tends to infinity as k does, we must proceed differently.
Then v2 ~ -] and (5.17) becomes

tanh ks [l-tanh(ky1+a)tanh k(y2+h)} ~ tanh(ky1+a)-tanh k(y2+h) (5.36)

15
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Thus
1 - tanh (kyl+a) ~ tanh (kyl+a) -1 (5.37)

It follows that « must tend to +» as k does. Then (5.10) yields

[Ny

7,

w ~ (kg) (5.38)

This is the result for the surface wave.

E. DEEP OCEAWNS

In the oceans the depth is so large that kh >> 1 even for the
smallest practical value of k. In this case it is possible to simplify
some of the preceding results. For example, in (5.17), we can set
tanh k(y2+h) =1+ ... . Then the solution of (S5.17) for small k can
be carried beyond the leading term given in (5.29) and (5.30) with the

result
1 Vi1
o= (g'ly, DAL - x+...], n=0 (5.39)
(g's)% s
w= L3 ¥ - k+...], n>1 (5.40)
nm n2ﬂ2

In writing these results we have assumed that wi/glyll << 1, since in
the oceans this number is typically of the order 10-3.
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VI. WAVE HEIGHT DUE TO A MOVING SOURCE OR DIPOLE

The wave height nsource(x’z’t) has been determmined for a unit
point source of fluid moving with the constant velocity -v at the

depth Yo The: asymptotic form of T far from the source is

source

1 (x4+vt,z) ~ E:'—TT—_my—T cos (kr-wt+m/4) (6.1)

scurce (V _c )4

(Ref. 1, Eq. 11.14). The sum in (1) is over the modes of wave propaga-
tion, and for each mode over the roots k and v of {(2.7) and (2.8}. The
functions w(k) and c(k) = w/k are detemmined for each mode as in Sec-
tion S and B is given by Ref., 1, (10.9).

e 2 Lu?-N2(0)TuCy,)
= - -1 W
Taw [N (0)J0(0) g, (0]

(6.2)

Here w(y) = po(y) v(y) where v(y) is a nontrivial solution of (5.1)
and (5.3).

If the source is a dipole of unit strength oriented along its

direction of motion, the wave height 1| can be obtained by differ-

dipole
entiating (6.1) with respect to -x. Only the phase -¢ of the cosine
rneed be differentiated and in view of (2.5) its derivative is -er +
wr_ . Alternatively we can obtain -9y from (2.12). In either way we

obtain

k(c-cg) B

(x+vt,2) ~-—§:- 7T sin (kr-w7+g) (6.3)

T,
dipole v(l-ccgv'2)(V2-C )

17
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With the help of (2.3), (2.10) and (2.13}, the e=quations (6.1)
and (6.3) can be written in the shorter forms:

_<+ B
nsource"z;;}g cos (¢-m/4) (6.4)
y _ < Bpr .
ndipole —Zm sin (¢-mn/4) (6.5)

In the example of Sec. V, we have N(0) = 0, Vi =Y cosh (ky+«), and
vky = cosh (ky+a) + ky sinh (ky+a). Then (6.2) becomes

w

o & pglyglviyy)
~ g cosh & ‘ﬁk ‘

B 5. (07 (6.6)

wa
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VII. ILLUSTRATION

A, NORMALIZATION

Figures (1) and (2) are drawn for a density distribution consist-
ing of a "thermocline" of thlckness 5 = Yy-Y, within which N2 is con-
stant, and outside which N = 0 (i.e., the case treated in Section V).
We collect the dimensioniess formulae used in the construction. All
distances are normalized with respect to the thermociine thickness s:

X=x/s, Y=y/s, Z=12/s; K=ks {(7.1)

17? 1 o1
and all frequencies to the Vaisala frequency N, so that

Q=uw/N, C=Q/K=c/(Ns), V=v/(Ns) (7.2)

= v/c = VK/Q is a "Froude Number," measuring source velocity rela-
tive toc the speed of internal waves. We consider only F > 1.

The dimensionless amplitude along any line of constant phase
¢ =0, 2m, ... is given by

n ~%
source _ 2 B (6.41)
s Ns§7§ 23y
Tgipote _  27% Bp(1-F"2)"* (6.5")
s Ns® XV *
s
where
: 2 (yg)v(
_ (25\2 N0 -k }Pol¥plVivgy 6t
B=G&E) g cosh « { po(0 (6.6)

19
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The expression po(yo)v(yo)/po(o) in (6.6') depends on the depth of the
source, y_ = sYO, in accordance with (5.5) - (5.8). The simplest case

is that of the source above the thermocline, Y0 2 Yl in which case we
find

p_{y Iv(y) 2. 42
° -0 0 = g3 X Y —_I:J_.S___Q
-__~5;Tﬁj_— s_nh(uYo+a), tanh o = g X (7.3)

B. NEAR WRKE

Equation (4.6) with N2 determined by (5.33) can be written in the

dimensionless form
3

L9 12(X-¢V),2

Z o~ |—W| (7.4)

Here ¢ = 2m, 4w,..., and n = 1,2 ... designate successive crests for

various modes. The cases ¢ = 0 and n = 0 are beyond the scope of the

present approximation. The wave crest can now be constructed for any

specified n and ¢.

For given n, ¢, X, and Z, the amplitudes can be obtained as follows.

First we eliminate N2 between (4.3) and (4.5) to obtain z = cg¢/N + eee s

with cg determined by (5.35). This leads to the dimensionless formula

Z ~ ¢(nm)? (K+2)° (7.5)

from which K can be czlculated. Furthermore from (5.23) and from the
definition of F we have

2
Q~1 - 5(%) (7.6)

F = VK/Q (7.7)

20
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By differentiating (7.6) we find
-4 s
Kag ~ 3(nm)” " (X+2)

C. FAR WRKE

Equation (3.6) can now be written
1 1
Z = (F> - 1)"2[X-2x B, oo
o 0
where Po and XO are given by

F =Y_
o 9y
¢w2v3
Ao = 2537
o
wls(v -wl)

(7.8)

(7.9)

(7.10)

(7.11)

The mode n = 0 corresponds essentially to a thermocline displacement,

and the modes n = 1,2,... to thermocline distortions.

these cases separately.

From (3.1), (5.39) and (5.40) we find

%

€
]

1
= (g's)%/nm, ®

€
|

2

By using (7.12) and (7.13) in (7.10) we obtain

1
F = |v
©

2l
We now define 6{n) by

6(n) =2 forn=0; &6(n) =1 forn>1

21

L= @'l D% w, = (g'ly,DEly, /2 for = 0

1
(g's)ﬁs(nﬁ)'3 for n >> 1

% for n = 0; FO = nmV for n >> 1

We need to treat

(7.12)

(7.13)

(7.14)

(7.15)




Then from (7.11) - (7.15) we obtain
¢v2p0 )
X = (7.16

° 6(n)(P§-1)

We now use (7.12) and (7.13) in (3.5) to get

1
8¢F (F2-1)%
7 ~ °2 g (7.17)
VK

From (7.17) we zan find K in terms of Z and ¢. Then from (3.39) and
(5.40) we find

Q= (V/EK - 67/ K% 4 L (7.18)
Differentiation of (7.18) yields

-1 -1 2,3
Koq ~ 267711 - 267~ (V/F_)K] (7.19)

D. RESULIS

We have computed wakes for the following cases:

Source depth Yo = 30 m
Thermocline depth yq = 50 m
Thermocline thickness s =10m

woon u ) -1
Vaisala frequency N =10 © sec

Figure (1)} and (2) portray the near wake for the cases V = +/I0 and 10,
corresponding to source velocities v = VNs = 0.316 m/s and 1 m/s,
respectively. The X-axis extends from X = 0 to 200, corresponding to
2 km fulli scale; the horizontal Z-axis is drawn to the same scaie.
With increasing v, the wake field is rapidly concentrated along the
source axis, particularly for large n and ¢. We have (improperly)
used the n >> . approximation for the cases n =1, 2. The case n= 0

W
(o2
(1)
<
]
]
2,

i ha scope of the present treatmer

for the near wake; and
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the far wake is off-scale in the example shown. The computed source
functions diminish rapidly with distance from the source axis. Unlike
the case of a surface (Kelvin) wake, internal sources moving at quite
moderate velocities through typically stratified fluids produce in-
ternal wakes that are sharply concentrated alcng the source axis.
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SUPPORTING ANALYSIS B

INTERNAL WAVES GENERATED BY A MOVING SOURCE

J.W, Miles
Institute of Genphysics and Planetary Fhysics
University of California, La Jolle
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ABSTRACT

The internal waves produced by either a moving body or the
collapsing wake behind a moving body in a stratified fluid are calcu-
lated asymptotically (at large distances behind the source) on the
hypotheses of small disturbances, the Boussinesq approximation, and
the slender-body approximation (the transverse dimensions of the body
and wake are small compared with the wavelengths of the significant
internal waves).

Explicit results are given for two, complementary models: (a)
a constant-N model, in which the density gradient is constant and (b)
a thin thermocline model, in which the density gradient pesks sharply
in a thin iayer and is elsewhere negligible. The internal-wave spec-
trum is continuous in (a) and discrete in (b); however, only the domi-
nant mode is included in the explicit results given for (b).

L WKB solution also is given for a thermocline model. This
approximation does not give an adequate representation of the dominant
mode but does provide estimates of the contributions of the higher
modes that are neglected ir the thin-themnocline model. These contri-
butions of the higher modes that are neglected in the thin-thermocline
model. These contributions are typicaliy negligible relative to that
of the dominant mode in the neighbourhood of the maximum, free-surface
disturbance.
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I. INTRODUCTION

We consider the disturbance generated by a horizontally moving
source in an incompressible, inviscid, vertically stratified fluid.
This disturbance comprises the near field, which dies out more or less
rapidly with distance from the source, and the radiated field which

consists of internal gravity waves. We focus primarily on the radiatead
field, but emphasize that there may be situations of interest in which
the amplitude of the near field is not small comp.red with that of the
radiated field. In particular, the radiated field in a steady flow
(uniform translation of the source) appeavrs only in the lee of the
source, so that the near field must be teken into account in calcu-
lating the disturbance forward of, or directly over, the source.

The appropriate similarity parameter for the generation of inter-
nal waves by a moving source is the reduced frequercy (or inverse

Froude number)

Q= N/u (1.1)
". 1 n
where N is a characteristic value of the intrinsic (or Vaisala) fre-
quency of internal waves {see Eq. 2.9 below), 4 is a characteristic
length of the source, and U is its speed. The frequency spectrum of

the internal waves is (0, N___). The intensity is typically a rapidly

increasing function of Q (aﬂgf therefore, a decreasing function cf U)
for 0 < Qc, say, where QC is a characteristic value of Q, of order
unity, at which nonlinear phenomena intervene. Internal-wave genera-
tion is weak for Q >> Qc’ and as Q » @ (U - 0) the flow tends to a
plug type, in which a horizontal column of fluid is pushed in front
of the body.

s .>
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We develop the equations of motion in Sec. II on the hypotheses
of small disturbances and the Boussinesq approximation {in which only
the buoyancy effects of density stratification are included, the iner-
tial effects being neglected). We obtain formal solutions of these
equations in Sec. III with the aid of integral transfomms and special-
ize these to a moving dipole (by which a body may be approximated if
Q << 1) in Sec. IV and to a slender, collapsing wake (a region of
stirred fluid) aft of a meving body in Sec. V. We give explicit cal-
culations of the internal-wave field for a constant-N model in Sec.

VI and for a thermocline model, in which N peaks sharply in a region

of limited vertical extent, in Sec. VIL and Sec. VIII.

The constant-N model is characterized by a continuous spectrum
(since we assume the fluid to be either infinite or semiinfinite) and
may be representative for laboratory configurations, although finite-
depth effects could be important in such configurations. The thermo-
cline model is characterized by a discrete spectrum and affords a more
realistic model for the ocean; we give explicit results only for the
dominant mode on the hypothesis that the thickness of the thermocline
is small compared with both its depth and the wavelength. We give a
WKB solution for the thermocline model in Sec. IX. This solution does
not given an adequate description of the domingc~t mode for a thin
thermocline, but it does provide adequate estimates for the higher
modes.

The disturbance produced by a moving body has been calculated
previously by Hudimac (Ref. 1) for a two-layer model of the ocean and
by Xeller and Levy (Ref. 2), Lighthill (unpublished papers), and Mei
(Ref. 6) for various models. There is a close analogy between two-
dimensional, time-dependent disturbances and three-dimensional dis-
turbances produced by a uniformly translating source. Xeller has
obtained results similar to (but more general and less explicit than)
those reported here. Many reports from Hydrorautics, Inc., also deal
with the problem, both experimentally and theoretically. Nevertheless,
it appears that some of the results given here are new. Perhaps the
mest interesting are the asymptotic approximations to the respective,
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lateral strains prcduced at the free surface by the displacement
(dipole) and wake (quadrupcle) effects of a submarine that is small

compared with the length of the internal waves, i.e., Q << 1., Thus
we have

j Lo

i

o

L N r .}
1y} ~ 0.4a®b%(he|a-n]) *, /u% 4 (1.2)

5 11
4°7 . & 2, ¥ -k
] ~ 0.8"b “(hefa-n]) * /M) UM TE (1.3)

where a, 4, d and U are the radius, length, depth and speed of the
submarine. o and h are the thickness and depth of the thermocline,
Nd and Nh are the intrinsic frequencies at depths d and h, and X d
and “q a2re the respective distances behind the submarine and the plane

in wnich its wake begins to collapse.
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ITI. EQUATIONS OF MOTION

We consider small disturbances in an inviscid, incompressible,
Boussinesq filuid in which the (hydrostatic) equilibrium distributions
of density and pressure are po(z) and po(z) and z is measured positive
upwards. Invoking the requirement that particle density be conserved
and linearizing the equations of motion, we obtain

p=p (z-¥) * p_(2)-p (2)} (2.1)
v'v = m, (2.2)

and
Po¥e = = 0 - 9{0, 0, pl, (2.3)

where p denotes the density, ¥ the vertical displacement of a particle,
v the velocity, m the source strength per unit volume, and p the pres-
sure, each as a function of the Cartesian coordinates (Xx,y,z) and the
time t; letter subscriptc denote partial differentiation, and the
triplet {--, -, -} denotes the Cartesian components of a vector. We
seek a solution of (2.1)-(2.3) for a prescribed source density that is
introduced at t = 0, an initial displacement ?o(x,y,z), and an initial
velocity go(x,y,z).

Let ¢ be a potential such that

P =D, - PPy (2.4a)
and
L=y * oy g0, vl (2.4b)
33
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Substituting (2.4b) into (2.2) and invoking the continuity equaticn for

,YO:
v.fY‘O =0, (2.5)
we obtain
b + ¥, =m, (2.6)
where A= 32 + 32 (2.7)
X y '

is the two-dimensional Laplacian, and the operators bx and o imply
partial differentiation with respect to x and y. We have assumed that
m=0at t=0; if m = m at t = 0, we need only replace the right-~
hand side of (2.5) by ™y and m by m-m in (2.6). Substituting (2.4a,b)
inte (2.1) and the z-component of (2.3) [the x- &nd y-components of
(2.3) are satisfied identically by (2.4a,b)], eliminating ¢ through
(2.6), and invoking the Boussinesq approximation (thereby neglecting

pé except where it is multipled by g), we obtain

/

. 82 2.
Yoottt \at + N9)ay = M. (2.8)
where

W = N2(2) = -gp{(2)/py(2) (2.9)

1t 1"
is the square of the intrinsic (Vaisala) frequency.

We seex the solution of (2.8) for the initial conditions (which
follow from our definitions)

=4 6= =m=0 (2.10)

and the boundary conditions

——y
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l6], 4] <= (Ix], ly] = =) (2.11a)

and

y=0 (z=20, ~-D), (2.11b)

corresponding to a free surface at z = 0 (which acts approximately as
a rigid boundary for internal waves) and a rigid bottom at z - -D.

A convenient measure of the disturbance at the free surface is
the lateral strain,
t
0 =f B,y (X>¥,0,7)dT, (2.12)

which plays a significant role in calculating the interaction Letween
the internal waves and pr2-existing surface waves.
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III. FORMAL SOLUTION
We defiqe the transforms

V= S33 4, M=SEIm, 4= 53

Y ywo’ (2.1a,b,c)

where

-]

i
sO)=f e, £ = ey % yas o > 0,

0 -i® (3.2a,b)

«©

. -1 -
3 ( )=f et ()dx, F () + (zn)"lf e ¥ ( )da, (3.3a,b)

-

and similarly for & , with x and « replaced by y and B, respectively.
Transforming (2.8) and invoking (2.]0) and (2.1la), we place the result
in the form

(ag - x2)(9 - o'l¢0) = c'lMZ + K2c'3N2¢0, (3.4)

where
A = KAL) (@ > 0) (3.5)
K = Jo +32 (k =2 0), (3.6)

and az implies partial differentiation with respect to z. The boundary
conditions for ¥ are given by (2.11b).

The Green's fanction for (3.4) and (Z.]l1lb) is detenmined by

36
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@2 - 216(2,) = 8(2-0) (3.7)
and
6(0,¢) = G(-D,) = 0 (3.8)

and yields the formel solution (Aafter integrating the term ir M by
parts):

120" (2) = -0 Yo (z,0mcrac + 2o Yoz, M@ (O (3.9)

We have suppressed the explicit dependence of the transforms on «a, 8
and o; the integrals cre over the domains of M and ¢0, which we assume
to be of finite extent, and & is Dirac's delta function.

Transforming (2.6), we obtain

8(z) = K'z(c\kz_%z - M), (3.10)

which completes the reduction of the formal solution to the determina-

tion of the Green's function and the evaluation of inverse transforms.
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IV. MOVING DIPOLE

We now consider the disturbance produced by the dipcle
m = UDaxé(x+Ut)6(y)5(z+d) (t > 0), (4.1)
which is introduced at x = y = t = 0 and z = -d and moves along the

negative-x axis with the uniform speed U. The parameter D is the

dipole moment and has the dimensions of volume (see below). Trans-

forming (4.1) in accordance with (3.1b), we obtain
M = UDig(o-iol) Y6(z+d) (4.2)

Substituting (4.2) into (3.9) and assuning the fluid to be initially
undisturbed ($0 = 0), we obtain

V= -uniac'l(o-iozu)'ng(z,Q) = -d (4.3)

The asymptotic limit of ¥ as £ — < is determined by the pole of

‘//—égé Laplace transform at o = ioll (corresponding to 3, ~ Ud, in the

equations of motion), which yields
S'lq'~ DGl(z)elaUt (t » =), (4.4)
where

GJ(z) = —Gg(z,g) ¢ =-d, o=ial (4.5)
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We determine the behaviour of X, qua function of @, in (4.5) from the
antecedent requirement that R\ > 0 as ¢ approaches the imagirary axis
from the right:

M o=l il = K-A/l—(k/a)': (lo] > k) (4.6a)
ike L AZ-a? (la| < k), (4.6b)

k(z) = N(z)/U (4.7)

1]

where

e
Il

(¥ also has an essential singulapity at o = 0, which makes no contri-
bution to the wave field, and branch points assuciated with the branch
points of X, qua function cf o, which contribute transients that die
out at least as rapidly as 1/t.) Taking the inverse Fourier transform
of (4.4), we obtain

o~ D3;+1Ut 3;1 G, (2) = yy(xtlit,y,2), (4.8)

where the subscript 4 implies dipole.

Substituting (4.2) and (4.3) into (3.10) and nroceeding as above,
we obtain the corresponding result

¢ ~upz L 31

e 5 [10/69)06,,(2)-6(2+d)])

i

¢d(x+Ut,y,z) (4.9)

Substituting (4.9) into (2.12), we obtain

-1

M~ D3 B (870070, 3] g = MyOeetie,y) (4.10)

We apply these results to: (i) small bodies of characteristic
length a and arbitrary shape and (ii) slender bodies of characteristic
transverse and axial lengths a and 4, where, by hypothesis,
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N(-d)a/u << 1 (4.11)

and

o
il

a/t << 1 (4.12)

We add that a slender body for which k4 << 1 is also smail.

The solution to the problem of a small body moving with uniform
speed U follows from the fact that the flow in the neighbourhood of
the body is locally potential (ka << 1 implies that the effects of
stratification are negligible over a region of scale a). Invoking the
well-known result that the potential flow past a body is equivalent
to that induced by a dipole at distances R that are large compared
with &, we may match the potential-flow soiution to the solution
(4.8) in an intermediate region a << R << 1/k and then use (4.8) and
(4.9) to determine the far field (Rayleigh-scattering approximation).
The dipole moment is given by Lamb (Sec. 12la, Ref. 5).

D= WV, (ka << 1), (4.13)

where V is the volume of the body and poV* its virtual mass with re-
spect to axial translation in a homogeneous fluid of density po(-d).

The solution to the slender-body problem follows by analogy with

the corresponding problem in aerodynamics, cf. Ward (Ref. 7). Omitting
the details, we obtain

£x,y52,8) ~ fS(E {4 yOarlie-8,y,2)/D)ds
(ka << 1, a << 1) (4.14)
and an analogous result for ¢, where S(x) is the cross-sectional area

of the body, and the integral extends over the body. We remark that

(4.14) reduces to ¥, if k4 << 1, corresponding to the fact that V. <<
V for a slender body.
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V. COLLAPSE OF MIXING REGION

We consider next the collapse of a small {in the sense of (4.11)]
mass of fluid that has been stirred--for example, by turbulence--in
such a way as to conserve its mass but alter its potential energy with
respect to a horizontal plane through its original center of gravity,
say z = -d. Our definition of d then implies

/ff (z+d)po(z)dv = 0, (5.1)

conservation of mass implies

fff[po(z_\’!o)-po(z)]dv * -fff po¥dvV = 0, (5.2)

and the potential energy is given by

E, = gfff(z+d)po(z-‘3o)dv % -gffj(z+d)pé(z)\'!0dv (5.3a)

= on(-d)Nz(-d), (5.3b)

"7 where Q is the quadrupole moment of the iegion.

Considering now the second integral in (3.9), we expand G(z,()
about { = -d to obtain

Jotzonor, e = oz, -0y ffPecrn (0

+ G2, _d)f(g+d)u2(g)\po(g)dg (5.4)
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and reduce (3.lc) to

V(o) # f [1,00y,00axay (5.5)

by virtue of our assumption that the dimensions of the mass are small.
Substituting (5.5) into (5.4), we find that the first integral on the
right-hand side vanishes while the second reduces to QN2(-d) by virtue
of (5.2), (5.3), and the Boussinesq approximation. Substituting the
resulting approximaticn into (3.9), we obtain

oYy = QN2(-d)K20"3G€(z, -d) (5.6)

We apply this last result *o a collapsing wake in the lee of a
small moving obstacle on the hypothesis that the fluid in the wake is
mixed, and perhaps also augmented by turbulent entrainment, over a dis-
tance X5 behind the obstacle, at which point the turbulent wake begins
to collapse and releases the potential energy UE'(xO) per urdt time.
The resulting, asymptotic (as t — «) disturbance then is given by

g1 -1gy25-3

S ~ Q' (x IN2(- d{/f sl Tt By K00 (-0} (6 2 (5.7)

Carrying out the integration with respect to T and invoking the fact
that (as in Sec. IV above) the inverse-Laplace transform of the result
is dominated by the pole at ¢ = ioll, we obtain

bty ~ K2 (x IF Ty Tt (6P /ia°)6, (2))

x+Ut X, y
= #q(x+Ut-x0, Vs2), (5.8)

where: k is given by (4.7); Gl is given by (4.5); Q'(xo) is the cross-

sectional quadrupole moment of the wake, is defined as in (5.3b), and

has the dimensions of (1ength)4; the subscript g implies quadrupole.
Similarly,
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2 ’ -1 “lis 2,03
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(z)-8(z+d)]}

(5.9)

ﬂq(x+Ut-x0,y) (5.190)
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VI. CONSTANI-N MODEL

We now consider the specific model of a fluid in which N (and,
hence, aiso k) is constant. This is a realistic model for thosz lab-
oratory configurations in which the effects of lateral boundaries may
be neglected. It is not a realistic model for typical oceanic config-
urations, but it does provide an extreme complement to the thermocline
model of the following sections. We give special consideration to the
limiting case D = ®, which is appropriate for oceanic applications.

The solution of (3.7) and (3.8) is given by

_ sinh(az)sinhix(c+D)] .
6(2,0) = ==55hmea) (z>0)

(6.1)
wherein z and £ must be interchanged if z < {. We observe that G is
a meromerphic function of xz, and therefore of each of », B and o,
for finite D, and has the Fourier-series representation

6(z,C) = -2I)§5 sin(nnz/D)sin(nnf /D) (6.2)
n=1 (lD)2 + (nn)2

We consider first the limiting case D - », for which (6.1) re-
duces to

G(z,C) = l-lexgsinhxz (z>¢, D=w)), (6.3)

which has the branch points of A, qua function of each of o, B and o,
Substituting (6.3), together with the complementary result for z < (,
into (4.5), we place the result in the fomrm
-A; | 2+d| A, (2-d)
Gl(z) = ke sgn(z+d) - ke , (6.4)
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where Ay is given by (4.6). We may interpret (6.4) in terms of a
source at z = -d and an image at z = d.* We carry out a detailed anal-
ysis only for the first term and move the origin to z = -d with the
implicit understanding that z must be replaced by z+d and the image
solution incorporated in the final results. In brief, we consider a
(dipole or quadrupole) source at the origin of an unbounded fluid in
which N is constant,

6(z,0) = e M2l (6.5)
and ‘Allzls
G,(2) = ke gnz (6.6)
Substituting (6.6) into (4.9) and invoking (4.6b), we obtain
04(%:y,2) = -(DU/8n2)f&fw<a2+32)"f(kz-a?)"ﬁei"(""B)dade, 6.7)
where o
X = ax + By + ixllzl (6.8a)
= ox + By + d'l(kz-az)%(a2+82)%|zl (6.8b)

Similar results may be obtained for Vd, ¢q and #q by substituting (6.6)
into (4.8), (5.9) and (5.8), respectively. We recall that x now is
measured in a reference frame moving with the source (x replaces Xx +
Ut in the development of Secs. II-IV above) and that ¢d is an asympto-
tic solution that is strictly valid only for kx - = (although experi-
ence suggests that the asymptotic approximation is likely to be quali-
tatively valid for only moderately large values of kx, say kx > 1).

We obtain stationary-phase approximations to $4° *d’ ¢q and ?q
in the appendix to this analysis. Introducing the spherical polar

coordinates R, & and 9 according to

y . ’Rllz'd!sgn(z~d)
*The image term in (6.4) also nay be expressed as +ke *
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)
Rcos6, r = (y2+z2)5 = Rsinf, y = rcoso,

pad
ti

(3]
1l

rsing (0 <6 <m, 0 <y < 27) (6.9)

and letting kR - @ with 6 and ¢ fixed, we find that ¥(a,B8) has two (no)
points of stationary phase if 6 < (>) %m, reflecttng the fact that
internal gravity waves (for which the group velocity exceeds the phase
velocity) appear only downstream of their source in a steady flow,
Substituting the resulting approximations into (2.4b), we obtain the
velocity fields

L
Ny ~ —(k2DU/2nR) ontesinw\2052@+sinzesin2@)2sin(kRsin@)

(kR » =, 0 <8 < k), (6.10)

3
and xq ~ (RSQ'U/2nR) gpscse(cos2@+sin26sinzw)ﬁcos(kRsinw)

(kR ~®, 0 <8 <), (6.11)

where

8 = {-sinB, cosfcosyp, cosPsing} (6.12)

is the unit vector in the direction of increasing €; both ¥q4 and zq
are asymptotically transverse to a spherical surface with center at
R = 0 (a well known property of internal gravity waves).

The maximum velocities given by the approximations (6.10) and
(6.12) are achieved in the neighbourhood of 8 = 0; however, the approx-
imations are not uniformly valid as § - 0, partially in consequence of
the restriction kr >> 1 (implicit in the staionary-phase approximation)
and partially in consequence of the slender-body approximation, which
does not give an adequate description of the interference among the
shorier waves (which are especially important in the neighbourhood of
8 = 0) that originate at various points of a source of finite cross
section. Assuming r << x in (6.10) and (6.11), but imposing the re-
striction kr >> 1 (so that 1/kR << § << 1), we obtain

46

? g ey

:.__.4' L]

ha

Gl gy e e =3 F——

]




gy ~ -pu/2m|ylze*y sin(kez/r) (kx >> kr >> 1), (6.13)

and
g~ (x*Qu/2mx%|y|°r T cos(kxz/r) (kx >> kr >> 1), (6.14)

where
r= {o, y, z}. (6.15)

The corresponding approximations to the lateral strains, as de-
fined by (4.10) and (5.10), are (we omit the details but emphasize
that the results calculated from ¢d and ¢q have been doubled to incor-
porate the effects of the respective image solutions at the free sur-
face)

N, ~ (k2dD/mx|yv]°r ®sin(kxd/r) (kx >> kr >> 1) (6.16)

Q.

and
3.0, \ 31.15.-9 \
n o~ -(k7Q/m)x7|y| " cos(kxd/r}) (kx >> kr >> 1), (6.17)

1
wherein r = (y2 + d2)2. The maxima of ﬂd and ﬂq with respect to |y|
are given by

(kD/87d%) (kx)sin(kx/y3) at y = d << x (6.18)

=3
o,
1}

and

Tq

-0.045(Q’/7d7) (kx)cos(2kx/3) at y = %/5d < x. (6.19)
The loci of constant phase for ﬂd and ﬁq are hyperbolae, corresponding
to the intersections of the conical, stationary-phase surifaces,

kRsing = x(as, Jg), with the free surface; the loci corresponding to
the approximations of (6.16) and (6.17) are

(kx/0)% - (y/d)? = 1. (5.20)

47

TOREr




T R RTINS I

T TR

TR YOI SRS

T R

It does not appear possible to obtain a simple, asymptotic approx-
imation (for kx >> 1) to (6.7) that is uniformly valid with respect to
kr; however, we can obtain an approximation that is valid at y = 0
(although still suffering from the aforementioned deficiency of the
slender-body approximation) by first evaluating the Fourier integral
over 8 [Erdelyi et al, Ref. 8, Sec 1.5(27)], whence

- 1
Bq = -(DU/4n2)Jf eiaXKO[{aQ(y2+zz) - kzzz}%](kz-d2)§da, (6.21)
-0
where the rcil part of the radical is non-negative, and KO is a modi-
fied Bessel function of the second kind. Differentiating (6.21) twice
with respect to y, integrating with respect to x, setting y = 0 and

z = d (in the reference frame with origin at the source), and doubling
the result to incorporate the effect of the image solution, we obtain

My(x,0) = (D/2n2d2/P i \ulKl{d(a2-k2)%}eiaXdu. (6.22)

The dominant contribution to the integral in (6.22) comes from the
neighbourhood of o = k, which yields

ny ~ _(D/d?) (2k/m3x) Esin(kx-km) (kx > 1, y = 0). (6.23)

Similarly, we obtain

g ~ (6Q'/d*) (2kx/m) Zsin(kx-km) (kx >> 1, y = 0). (6.24)
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VII. THERMOCLINE MODEL

We consider now the discrete spectrum of internal waves associ-
ated with a thermccline model, for which (by definition)

C s N%(z) < N2(-h) = Nﬁ (7.1)

and

! (7.2)

It
[{s]

0

sz(z)dz = 12 + 9o =
b

‘D

where -h is the vertical coordinate of the thermocline, that is the
ns Bp is the total
increase in density across the thermocline (Ap << p by hypothesis);

plane in which N(z) achieves its maximum value, N
and g’ is a reduced gravitational acceleration. Setting

c=iw (7.3)
in (3.5) and (3.7), we obtain

{22 + (c/w)N%(2) - K2}6(2,0) = 6(2-C) (7.4)

Invoking the assumptions, (7.l1) and (7.2) above, that N2(z) >0

and that the integral of N2(z) is bounded (a nontrivial restriction if

D = =), we infer from Sturm-Liouville theory that there exists a dis-
crete set of eigenvalues, say K;, and eigenfunctions, say fn(z), that
satisfy

“It would be more conventional to regard the wave speed, h = w/k ,
as the eigenvalue for the Sturm-Liouville problem, but we find
it more convenient for the subsequent development to introduce Kn
as the eigenvalue and to regard both w and K as prescribed.
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2 2
(3, + x N/w)® - <P}f (2) = 0,

£.(0) = £ (-D) = 0,

and 0

f(N/w)Qfmfndz = 6

mn
-D

[

(7.7)

where 6mn is the Kronecker delta. Expanding G in the fn in the usual

way, we obtain

6(2,0) = T (6%-k )M (23 (0)
n

Substituting (7.8) into (4.5), we obtain

(7.8)

6)(2) = LD (@) (0= U, (7.9)

where f/(-d) = (df/dg)g=_d.

Referring to Secs. IV and V above, we seek the far field (kx >> 1)
of a moving source. Substituting (7.9) into (4.8)-(4.10) and (5.8)-

(5.10), invoking the Fourier integral

3;1(32 + a2)"l = %a'le'aly‘ (Raz0),

and setting w = Uy, we obtain

. -3 7 - %
log04) = —(D/4ﬁ)%3![ Y, ~g 1% Ynlflflg(-d)

(7.107

. . 2 ’ F ol ? ....l - .l_
.{(md'l/Kn)fn(z)L'L'ln’| Y€ (fal Yﬂ)ly‘], fn(Z)}da
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and

where

{¢q,¢q}

= {k2(-d)Q'(xo)/4n}§f (azyn)'leidx"an‘fr'l(-d)

{-UE!(2), (i2/)f (2)}da (|y] > 0), (7.12)

Ty = -(D/4mY / K;,Qf;l<-d>f;,<o>ei°°‘<vne”n'y'-lcvie""’y )aa,

n =
(7.13)
N, = {1<2(-c1)Q’(><O)/4n]}jn f(ivn/or3)fr'}(-d)f_é(o)eidx'Ynly‘da,
) (7.14)
v, = @ - k% @y =0, (7.15)

I; - —
and fn(O) = dfn/dz at z = 0.
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VIII. THIN THERMOCLINE APPROXIMATION

We carry the development of the preceding section further for a
thin thermocline, for which N2(z) differs significantly from zero only

in a small neighbourhood of z = -h, where it exhibits a single, sharp
peak. We also neglect bottom effects by setting D = ». This model is
perhaps more realistic than, but in any event complements, that of Sec.
VI.

The dispersion relation for the dominant mode of a thin thermo-
cline may be expressed in terms of the thermocline parameters Nh and
b, as defined by {(7.1) and (7.2), and the depth of the thermocline on
the basis of the assumptions

Nbb/u = khb << 1 and b/h << 1. (8.1a,b)
Setting N° = 0 for jz+h| >> b and invoking the boundary conditions (7.6)
and the requirement that f(z) be continuous across z = ~h as b = 0, we

choose the solutions above and below the thermocline in the form

- Kh sinhK .
£(2) = £ {TSFUR SR (2 2, . (8.2)
e

where fh = f(-h). Integrating (7.5) across the thermocline and remark-

ing that both £ -k2f and N2 vanish except in the immediate neighbour-

hood of z = -h, where f” is discontinuous, f = fh’ and the integral of
N2 is given by (7.2), we obtain
0 ~hte
- v o2 2 - lim ’
0 = f (e PErx W Pe)az = M i
Yo ~h-¢
~-h+e
. 2. 2 / 2
= _K . L
+ (K/0)7F, L—e Ndz (cothh + 1)E + g’ (% /w)%f, .

(8.3)
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Solving (8.3) for w*, we obtain the dispersion relation [Ref. 9,
(5.3.7)1*

-2kh

w? = 3ok (1-e”2M) (8.4a)
- g'hK2(1-Kh + ...) (¥h = 0) (8.4b)
~ L3’k (Kh = @), (8.4¢)
Similarly
. - 2K P
e | = o] /0 = K (oeb(1-em2 M)} (8.5a)
L
=k, (Ph)20(1 - ¥¢h + ...) (Kh = 0) (8.5b)
1
~ Kk ObK)Z  (Kh - =) (8.5¢)
and
ool el e oaee ™y
(1-e"7)% (g.6a)
1
-~ (@M)21L ~ k14 ...) (kh - 0) (8.6b)
’ %
~ %(g'/2%)% (Kh - =), (8.6¢c)

We note that (8.6b) and (8.6¢) intersect at ¥h = % and serve as rough
approximations (with maximum errors of 20 percent) for Kh < % and

*The preceding derivation is an abbreviated form of a technique used
by Lighthill, (Ref. 10) and Drazin & Howard, (Ref. 11). This tech-
nique alsc may be applied to the higher modes, but the results are
rather unwieldy. Moreover, the contribution of the dominant mode
to the free-suvface disturbance will dominate the contributions of
the higher mcdes if (8.la) is satisfied (see end of Sec. IX below).
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Kk > %, respectively, in the subsequent, stationary-phase approxima
tions. Substituting (8.2) into (7.7), we obtain

Kh

fﬁ = Lk (1-e~ 2Dy, (8.7)

We emphasize that (8.4)-(8.7) hold only for the dominant mode¥® (n = 1).

g We use the approximations of (8.2) and (8.5) to cbtain asymptotic

approximations to the lateral, free-surface strains, nd and ﬂq, on the
basis of these hypotheses: (a) the contributions of the higher modes
(n 2 2) are negligible compared with that of the dominant mode (we
omit the subscript 1 with this understanding) and (b) |a| << K, for
which a sufiicient condition as U >> (g'h)%. The latter hypothesis
permits the approximation

vy ¥ ik (0 s ¢ << K) (8.8)

in place of (7.15) and the neglect of |a!e"|QY| compared with Ye-YiYI
in (7.13). TInvoking these approximations, substituting (8.2) and
(8.7) into (7.13), setting z = 0, and choosing K, rather than «, as
the variable of integration (thereby regarding @ as the eigenvalue
for prescribed K in the Sturm-Liouville problem), we obtain

@

' Ny ~ -(D/2n)Rf 1k 2(da/ar)p(r)e KB EXKlyDge (g g
/ ’
where
(1-e-2KNy-1(y -2Kd, N
D(k) = (d <h) (8.10)
-1
and H=h+ |d-h]. (8.11)

*The oscillaticns of fn(z) across the thermccline do not pemit
the approximation i(z) ¥ fh for n > 1 in the integrands of (7.7)
and (8.3)
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We obtain the correspondlng approximation to ﬂ by replacing DK by
k2 o)’ (xO)K /1a in (8.9). The dlsnontlnulty at d = h corresponds
to the discontinuity in f£'(z) at z = -h and is an intrinsic character-
istic of the thin-thermocline approximation.

Carrying out a stationary-phase approximation to (8.9), we
ovtain

Ty ~ -D(2m0 (<2 (da/ar) | ey ax?| oo B XK Il F W (g 19
whzre K is determined by
du/d = c /U= |yl/x (i << |y] < (h)% ). (8.13)

There is no point of statlonary phase, and ﬂ is O(x~ ) rather than

0{x ‘) as x - », if |y| > (gh’ )2x/U A saddle-p01nt, rather than a

stationary-phase, approximation must be used if lyI/H is not large;

K then must be determined by replacing ly|] by |y| - iH in (8.13) and
is complex.

The maximum value of lﬂdl corresponds roughly to the maximum of
Kzexp(-KH), that is KH # 2, which yields a value of ¥ that increases
from 1/h to 2/h as d increases from 0 to h and then remains at 2/d
for d > h. We may refine these estimates, at least for d < 4h,
by utilizing the asymptotic approximation (8.5¢), the substitution of
which into (8.12) on the assumption that ¥ is real (|y| >> H) yields

-3 L 9 . K
14l ~ D(2ntx) 2059 Y| D(x) | E. (8.14)
We find that the maximum value of (8.14) occurs at Kh = 1.0 for d << h,

Kh = 2.1 for d = h-, and Kh = 2.25 for d > h, so that K{ = 2 provides
an adequate basis for an estimate, namely (we take D * 1)

Iyl _ = 0.205 F(w) HE (¢ < an) (8.15)
at )
lyl/x % (¢'H)%/4U (4 < 4h). (8.16a)
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If d > 4h, we must use (8.6b) in place of (8.6c), the principal effect
of which is to replace H"g/4 by d'zh'% in (8.15) and (8.16a) by

lyl/x <9’h)%u'l[1-(2h/d>] (d > 4h). (8.16h)

The counterparts of (8.12) and (8.14) for ﬂq are

1, ~ K20’ (xg) (2m0) Rk ™ 3(da/a) | oa/an®
.D(K)G-Kﬂ+i(ax—K|y|+%n)} (8.17)

11/4 -KH

L . L+
and |7| ~ INC-a)/0,3%Q" (x) (U/mx) 2™ (8/g" Yo/ *D(K)e (8.18)
The maximum value cf Iﬂql occurs at KH # 11/4, wnere the deviazion

of D(K) from unity is small, so that

1M | = 1.0[NC-)/N, 120 (xpdg RSt Y A (8.19)
at ly|/x * 0.2(g'H)%/u (d < 5.5h) (8.20a)
or lyl/x # (g'n)2u1{1-2.75(h/d)] (d > 5.5h). (8.20b)
We also note that

Oty -
L ne-ay] 1) g
.n§ = [}1;1 D J C_g N .’(8.21)

We use this last result to compare the lateral surface strains
produced by the dipole effect of a small, prolate ellipsoid of radius
a and length 4 and its wake on the hypothesis that the wake is (or
has the same potential energy as a wake that is) fully mixed and of
radius a; then D # 2ﬂa2&/3 and Q' = na4/4. Substituting these results
into (8.21), we obtain

z. .

e e e B
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(8.223)

(8.22b)

The factors a2/bL might lie between 10"2 and 107 for a typical sub-
marine, U/cg might lie between 10 and 102, and [N(-d)/Nh]2 is less
than unity and might be as small as lO'2 if the submarine is well out-
side of the thermocline. It follows that, within the limitations of
the hypotheses implicit in our model, the dipole effect is likely to
dominate the wake effect. Both effects achieve their maxima if the
submarine is in the thermocline (d * h % H) and fall off rapidly with

increasing d/h.
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IX. WKB APPROXIMATION

The WKB approximation to the solution of the Sturm-Liouville prob-
lem posed by (7.5) and (7.6) may be expected to yield qualitatively
accurate results for all but the dominant mode (n = 1 below), although
the implicit assumption that Nz(z) is a slowly varying function ren-
ders it quantitatively accurate only for those modes for which Knb
>> 1. It is generally inadequate for even a qualitative description
of the dominant mode of a thin thermocline, for which Klb << 1 and
N2(z) varies rapidly near z = -h. It is consistent with the WKB
approximation to neglect the effects of both upper and lower bounda-
ries (the implicit restrictions are ¥ h >> 1 and KnID-hI >> 1, re-
spectively; the violation of the former restriction is likely to be
qualitatively significant only for the dominant mode, while the latter
restriction is almost always satisfied in a real ocean). Bearing
these remarks in mind, we rewrite the Sturm-Liouville problem of (7.5)-
(7.7) in the form

{ai + Kiw(z)}fn(z) =0, (9.1)
£ (22) = 0, (9.2)
and J/. wfmfndz = amn’ (9.3)
where w(z) = 0 2N%(z) - 1 (9.4)

is the weighting function, and Kn is the eigenvalue. The results
presented in (7.8) through (7.15) remain valid for this revised

formulation.
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We proceed on the assumptions that N2(z) satisfies (7.1) and has
only a single peak (N =N at z = -h) and that lo] < N, (waves for
which !wl > Nh are not propagated); then w(z) has only two zeros, say

2, and 2, such that
W(ZL) = w(zu) =0 (ZL < «h < Zu) (9.5a)
and w(z) >0 {(z, <z <z), (9.5b)
P A u
1 1
We also define arg w2 = 0 for w > 0 and infer arg w2 = Lm for w <0

from the requirement Rc > 0 (or, equivalently, Jw < 0) and the fazts
that N'(z,) > 0 and N’(z,) < 0. We then may pose the WKB phase inte-

gral in the forms

P(zu) + iQu(z) (z > zu)

z
P(z) = é; widz {> ¢ (ZL <z < zu) s (9.6)
= - 1iQ,(z) (z < z,)
where zy
1
Q%(z) =J/» (-w)édz (9.7a)
z
and 2 1
Q,(2) =/ (-w)2dz. (9.7b)
Z
u

Invoking the fact that w - -1 outside of the thermocline, we obtain
QL(Z)’ Q,(z) ~ [z+h]  (|z+n| >> b). (9.8)
The WKB solution of (9.1) and (9.2) is given by the following (we
omit the details but note that the problem is analogous to that of the

harmonic oscillator in quantum mechanics)
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(-)n'le.vp{-KnQu(Z)} (z >z))
£ (2) = Cnlw(z)]'% 2cos{k P(z)-4m} (2, <z <z)) (9.9)

eXp{-KnQL(Z)} (z < z,)

except in the neighbourhoods of z = z and z = Z, where Airy-integral
representations must be invoked. The corresponding approximations to
the eigenvalues are given by

z -1
u

= (n-%)m f widz (n=1, 2, ...) . (9.10)
Z
2

The normalization of (9.3) implies

= [m(2n-1)"17 % 2 (9.11)
We calculate Kn on the basis of the parabolic approximation
N(z) % N.h{l-( zthy2 (2 <z <2z) . (9.12)
If we assume that (9.12) is valid for all |z-h| < s and that N =0

in |z+h| > s, (7.2) implies b = 4s/3. If we assume that N? = Nﬁexp

{-(z+h)2/s2}, for all z and is approximated by (9.12) in z, <z < Z,2
(7.2) implies b = n%s.] Substituting (9.12) into (9.10), we obtain*

=
1l

(2n-l)s'lth(Nﬁ-w2)'l (@ < N) (9.13a)

(2n-1)s"Ha(k%-a®)"t (@ <k) , (9.13b)

where, here and throughout this section, k = k(-h).

*This result is exact if N(2z) is described exactly by (9.12),
for which (9.1) is Hermite's equation, and the f (z) are
Hermite functions.
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We proceed on the hypothesis that

la] << & | , (9.14)
by virtue of which we may approximate (7.15) by

Y, ¥ iKn 5 (9.15)
where argy, is determined by the requirements Ryn 2 0 and Ja < 0, and
neglect the term in exp(-|ay|) in (7.11) and (7.13). Ve also use the
approximations of (9.8) outside of the thermocline. Invoking these
approximations, substituting (3.9) into (7.13), and restricting the
range of integration to that of the propagated waves (Ial <k ; waves
for which |a| > k are not propagated and are negligible for kx > 1)

My ~ -(D/2m)3]

k . . .
A RJ{' 5K 2e1ax-(2n-l)1Kl(|Yl-1H)da )
n=1 n 0 1

(h, |d-n| >>s) , (9.16)
where A= (2n—1)[n'+(2n-l)'l]'l[sgn(h—d)]n R (9.17)

Kl is given by ($.13b), and H is given by (8.11)., Introducing the

change of variable

a =k sinC (9.18)

and the pavameter
b = (2n-1)(kxs)'l(|y|-iH) (-%m < argp < 0) , (9.19)

we rewrite (9.16) in the form
© Al

~ —(kD/2n32) E:Anﬂ isin2gsec3Ce
n=1 5

ikxsinC(l»unseCQQ)dC. (9.20)

T
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The integrand of (5.20) has a saddle point at the point deter-
mined parametrically by
o _ _ 2.2,. 2.-1
sin{ = a/k = Vo oHEn T (l-vn) (1+vn) R (9.213,b)

where Y is a complex number., The contribution of this point domirates
the asymptotic approximation (as kx = ®) to the integral (after an
appropriate deformation of the path of integration) if |un| <1 and
Il-unl is not small, Carrying out the saddle-point approximation, we
obtain

My ~ (D/s¥)Y By Cox, )

n=1
3 3
-3 2 2,7 2 2.3 2.-% §(X -
Ry, = 5o TE R{VE (1-v3)  2(v2)E(sen?) %t Knm31/4)y 1 (9.22a,1)
3,0 24y-1 .
where X, = Zkxvp(14v) . (9.23)

Similarly, starting from (7.14), we obtain

2rq 45 ,
Ny ~ [¥C-a)/N 17TR (xg) /s ]Egghqn(kx, b)) s
7
Agn = %(ﬂkx)-%(Zn-l)zkn@{vE(l_vﬁ) 2’l+“ﬁ)%(3+vﬁ)-%ei(xn—3ﬂ/4)}
(9.24a,b)

The largest terms in the modal summations of (9.22) and (9.24)
are those, if any, for which Iunl is small and, from (9.21b),

+ O(ip,ni} . (9.25)

Substituting (9.25) into (2.23) and retaining only the dominant terms
in each of the real and imaginary parts, we obtain

1 1 : 1 1
X_ % kx - 1(20-1) 2(x/8) 3 (7 2H0) By | 12 = k- dX (9.26)
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Substituting (9.25) into (9.21) and (9.13b), we obtain

lass | = (2n-1)"Hes| 2w |7, (9.27)

so that the approximation (9.25) is consistent with the restriction
(9.14).

We use the approximations (9.25) and (9.26) to obtain the esti-

mates
9
T Lk I y ) 2 <
Iag | # 2 Fn fme(20-)7 117 (an-1) %00 557 (y%4H) et (9.28)
) %; 1 . 5 57 7
and |Aqn| % 2 n"é[n+(2n-l)'l]'l(2n—ljz(kx)zsz(y2+H2) 8a%ni .
(9.29)
Assuming |y| >> H, we find that !Adnl has its maximum at
\yl/H = (2/9)(2n-1)(H/s)kx >> 1 (9.30)

and similarly for |A nl’ with 2/9 replaced by 2/49. These maxima are
fairly sharp (in |v|/H) and therefore can be achieved by only a single
mode at any given point. The corresponding maxima in lﬂd| and Iﬂql,
neglecting all modes except that for which (9.30) and its counterpart
for IAdq‘ are satisfied, are

3
Mgl oy = 0.025(2n-1) " E(kD/5H2) (k)% (9.31)
) L = s
and M| = 0.15(2n-1)" S N(-a)/N 120Q (%) /s 1002 (9.32)

Comparing these maxima with those of (8.15) and (8.19) for b = 4s/3
and n = 2 (typically the most important of the higher modes), we

[32}
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conclude that the contributions of the higher modes, relative to those
of the dominant mode, to |M,| and |7 | are not likely to exceed
0.05(H/S)3/2 and 0.12(s/H)3 4, respegtively. The former ratio could
be larger than unity, but only for H/s such that all contributions to
Indl would be very small; Ehe latter ratio is certainly small--typi-
cally between 107% and 1072,
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APPENDIX TO ANALYSIS B
N STATIONARY-PHASE APPROXIMATIONS
. We require stationary-phase approximations to integrals of the
form
; © m
: I= (zn)'szf(a,e)e1x<a’8)dads ) (AL)
3 - -~ S
A 1 )
5 where X = ax + 8y + a'l(k2-a2)é(a2+82)éz s (A2)
1
z >0, and R = (x2 + y2 + zz)i - @,

* ’ Considering first the g-integration, we find that X Yias a point
3 .- of stationary phase &t
L,_
4 1
? B =8 (a) = _ala]yPz-a?®) 7, (A3)
L
; at which point
i . 1
i X(a,B (a)) = ax + (k222-a2r2)ésgna ) (A4)
g “ and 3

Xgg = (az)’2<k2-a2)"l(kzzg—a‘rQ)zsgna (as)
1 Carrying out the stationary-phase approximation to the 8-integral,
: we obtain
u- - . é o

~ 2 -% i s

, T ~ (2m) J/,(fxﬁB)B=BS(Q)GXP{1x(a’Bs(a)) + Yimsgnalda . (R6)
1 - «©
1 .
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The integral in (A6) hos two points of stationary phase at

0 =a_ =+ kxz/rR = + kcosfsin® (A7)

and B =8

-asyx/r2 F kcoszecscesin¢cos¢ (A8)

v

if x > 0 and no points of stationary phase if x < 0; R, 6 and ¢ are
polar coordinates, defined by (6.9) above. We also obtain

X(ag,B. ) = + kzR/r = £ kRsing (R9)
X =% R jkrz (A10)
o ’
1
and XBB = % (:o—"R./kx2z)(y2R.2+22r2)'2 > (A11)

whers the upper and lower signs correspond to o 2 0. Assuning that
f(-c, B) is the complex conjugate of f(a, B), we find that the con-
tributions of the two points to the stationary-phase approximation to
I are complex conjugates, with the end result

2 B 1 -
I~ (kxz/anRf)(y2R2+z2r2)ﬁB{f(as, as)elkZR/r} (x > 0} (Al2a)

= (k/wR)cotesinw(cosz¢+sin29sin2¢)%ﬁ{f(as, Bs)elkRSIn@} (x >0).
(R12b)

Comparing (6.7) and the corresponding representations of vd’ ¢q’
and ¢q to (Al), we obtain

b3 1. ’
%D{-U(a2+82)—§(k2—a2)? , sgnz} (A13)

1]

f{¢d"'{d}

‘.;\ikQQ'a{u(m2+32)15(k2—a2)35 ) -(a2+82)sgnz}. (R14)

1]

f{¢q,¢q}
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Substituting (Al3) and (Al4) into (Al2b), we obtain

b

1
$ {¢d,¢d} ~ (kD/2nR){-u,cotesinw](cosz¢ + sinzesinch)i

‘- g

*cos(kRsingp) (kR -, 0 <8 < kn) (A15)

and {¢q,¢q] ~ (k2Q1/2nR){-chc¢, cote}sececscze

i
(&Y

: - '(cos2¢asinzesin2¢)zsin(kRsinw) (kR » =, 0 <8 < %n)
? v’% ) (Als )
L - Substituting (AlS) and (A1l6) into (2.4b), we obtain (6.10) and (6.11}.
e
]
i -
7
-
I
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SUPPORTING ANALYSIS C

THE INTERACTION OF INTERNAL WAVES AND GRAVITY WAVES

J. Hartle
University of California, Santa Barbara
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We wish to stucy the effects on rather small surface waves, and
specifically on their height and slope, of the existence of internal
waves in the region of ocean through which the surface waves are mov-
ing. Surface waves damp exponentially in depth in a distance compara-
ble to their wavelength, so for smail surface waves, we can assume that
the dimensions of the internal wave are very larye compared to those
of the surface waves, anc therefore the internal wave can be well rep-
resented by a horizontal depth independent current. We describe this
with a velocity field U(x,y,t), which is a function only of time, of
the horizontal coordinates x, y, and with no vertical component. Fur-
thermore, we may expect the times and horizontal distances over which
U varies to be much greater than those over which the surface waves of
interest vary.

We shall ignore viscous and other dissipative effects for the sur-
face waves; that is, we shall assume that damping is unimportant over
horizontal distances comparable to the region occupied by the internal
wave. Typically, we shall be interested in dimensions of surface waves
which dissipate in distances considerably longer than that. On the
other hand, since the size of the effects we are interested in will be
characterized by the parameter U/cg, where cg is the group velocity of
the surface wave, we are also most interested in slow (i.e., short
wavelength) gravity waves. Yet these are also the waves that dissipate
most quickly. We must therefore strike a balance between the two re-
quirements.

Finally. we shall assume incompressible irrotatiocnal flow in the
region of ocean occupied by the surface waves. Irrotational flow is
described by a velocity potential ¢ which satisfies

V¢ = 0 (1)
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There are three boundary conditions on the solution to the equation:
(1) At the surface, the vertical velocity of the fluid 3¢/dz is the
same as the time derivative of the height of the surface h(x,y;t), so
that

%%:g-}}J,(v(p.v)h:g% (2)

and Bernoulli's equation relates h to the derivatives of ¢:

g—% + % ()% = -gh . (2

(2) The second boundary condition is the assumption that at large depths
u approaches the imposed velocity U

B(X,y,a,t) am—————— Q(X,y,t)
Z = -

or if ¢ is the velocity potential for U so that

P(X3Y52,t) et B(X,Y5T)
Z - -®
(3) The final boundary ~ondition is the initial condition that for
times far in the past the imposed flow vanishes and the wave approaches
a freely propagating wave o

P(X3yY52,t) s ¢0(x,y,z,t)
t - -

(4)

8(X,y,t) —————

t—o_w

The effect of the imposed flow on the propagation of surface waves
is expected to be small since the velocity of the surface current is,
in general, much smaller than that of the surface wave in open sea
conditions. The hydrodynamic equations adumbrated above may therefore
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be expanded in powers of U and only the linear term retained. We

begin by writing
¢ =& + ¢o + ¢l (5)

where ¢0 is the velocity potential the initial wave would have had in
the absence of the surface current and ¢l is the correction due to its

presence.

The equations governing ¢, are obtained by substituting Eq. (5)
in Egs. (1) thrvugh (4) and retaining only terms linear in ¢ and 2.
Noting that & and ¢, separately satisfy Egs. (1) through (4), we have

2
v =
9, =0 (6)
with the boundary conditions
¢1(X:Y>z)t)—-—'—"> 0 (7)
t 2 -
Z - -

and

2
at? + g5t 2 P L(ve + V¢l) . /¢0] +% (V¢l + V&) . V(V¢o)

+ v¢o . v[v¢o o (V3 + v¢l)} =0,

As a consequence of the small implitude assumption, terms which are
quadratic in ¢o are negligible in comparison with those linear in ¢o.
Further, since ¢o is a small correction to ¢0, terms like ¢l¢o may be
neglected in comparison with ¢l.

The boundary condition at the surface then becomes
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The problem is now to solve Eq. (6) with the boundary conditions (7)
to (9). The general solution of Laplace's equation (Eq. (6)) which
satisfies the boundary condition (8) may be written

2
8)(%:2,%) = %‘;—% g - 98) k2 g (g0)
o

Since ¢ , the unperturbed flow, also satisfies Eqs. (6) and (8), it
has a 51m11ar Fourier decomposition with Fourier transform a, (k,w).

Here and in the following, x will mean a two-dimensional vector in

the xy plane. Equation (9) then becomes

2iw

a (}S,(D) =
1 gk - w

F(k,w)

where F(k,w) is the Prurier transform of (U V¢o)z=0 given in terms
of dy and the Fourier transfomm of U by

2
F(k,0) = 1/9-(—;1—‘;-} UGk-g, ©-v)* g a (V) - (10)
T

This solves the problem of determining the perturbation ¢, to a
small amplitude surface wave ¢0 caused by an arbitrary surface cur-
rent U. The quantity of chief interest, however, is not the velocity
potential ¢ but rather the height h. If we write sh for the change
in height caused by the surface current, then we have from Eq. (3)

3
_ 1| .
5h“§[“a?+9 "%] :

Here we have retained only terms linear in U, have neglected temms in
¢§, ¢o¢l’ and have used the fact that there is no vertical displace-
ment from the velccity potential ¢ in accordance with assumptions (1)
through (4). For &¢,/dt we have
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a¢l =J/’d2k dw [ 20° i(kex - wt)
ot (211)3 gk - w

2 .
=fd kdw |, 20k | pgouy 06X - u)
(2m) gk - w

2 .
-2y W +2fdkd§ g E(u0) il - o)
© (2m)° gk - w

Thus for &h we have

Ll . Vg 2 o
6h(2(‘,t) = —-———-—9- .,.‘/‘d k d(‘g 5 2k F(l’s,w) el('}g X - (Dt)
(2m)” w® - gk

or in terms of the Fourier transforms of ¢O and U (cf. Eq. (10))

U . 2 2
Bh(x,t) = 0 | i/d k d«_n5 22k d“q d; g, ©-v) * g
(2m)” w® - gkJ (2m)
a (g - V) X - vty (11)

In general, the nonlinear effects on the unperturbed wave will
be of the order of magnitude
h
2,09 max
v ~ a2
typically a number like 1/50. These effects are therefore large com-
pared with the effect of the surface currert which might optimisti-
cally be of the order of several percent. For a calculation of the
total wave, these nonlinear effects cannot be neglected. If, however,
one is, as here, mainly interested in the change in the wave structure

due to the surface current as calculated from Eq. (11l), then the change
arising from the linear part of the wave will be larger by the factor
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(hmax/2nx) than that coming from the nonlinear correction. To calcu-
late 6h from Eq. (11), we can therefore replace a, with the value

appropriate for a plane wave with wave vector k , frequency w, = (g k )é,

~0
and amplitude A:

a,ow) = (2m7 B 6Pk ) s )

One finds, then, that

U . v .
higyt) = S0y g (S BR gy gy y g B
g (2m3 w® - g~ 0T o
(12)
Writing
+W
1 - 7
-0
the w integration can be performed by evaluating
+w
-iw(t-t’)
%—7——---e —= I(t-t’) . (13)
w -g

-0

In order that ¢l vanish for large negative times the poles in

the denominator of the integrand in Eq. (13) must be displaced slightly

into the lower-half-complex-w-plane. One then has

0 ’ ! t <t
I(’C—tl) =1\ i [e—i@' (t-t") - eivTc_g (t-t )] .

2/kg t >t

Making these substitutions in Eq. (12) and displacing the k integra-
tion by an amount go, one has

t
,Q,(?é,,t)
sh(x,t) = {i "—0-——9-—-—— + = / J(gg,t,t') dt’

-0

ik -x-w t
Re ™®
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where

J(X t tl) f——-— "gllﬁ(‘.{_}so e+lw (t t ) . 'g(’ls-',tl) el’l:"‘?‘(’

b
i

Frantes Fa

[
Tadnn W,

[ -i: |k+k0| (t-t ") idg|k+k0| (t-t')]
e .

e DB ey

Now, the wavelength of the internal wave is much longer than that of :
the surface wave and U(k,t) will be sharply peaked about k=0. We may ;

therefore expand\}g|§¢k0| about k=0.

ek,
Vol | =o k, + R
o]

1
Writing Eg =% Eo (g/ko)é for the group velocity of the surface wave,

we have

2
d%k
J(x,t,t’) +f k 5 w +c +klk -« UCk,t”)

ik o [x - ¢ (£-t*)] 2iw (t-t*) ik « [x + ¢ (t-t")]
[e™ ~ 79 e ° e~ T 79 1.

Since the surface current varies slowly in time as well as space
{assumption (4)], the second term will be small compared to the first.
Therefore

< Ix - gg(t—t')]

ik
J(X,t,t ') = [w - i c . V]f—_——z k L u( ’t ) e
~ ° (2m) .

P ’
=log - dgs - vk, « Wy - gole-eh, 1) .

If we denote the height of the unperturbed wave by ho(g,t), sc that

~i
~l
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N = o ~o o N o

h (X,t) = 4 5 e , .

then we may write .
t
k L] U(Z',t)
sh_ %o ' < e i Lnd . : N, t
R = > e, +‘/P dat’ [~ 1 ko - % ﬁo vl ho Ulx-c (t-t’), t’].
-0

The height of a wave can change at a given point and at a given time
not only because the amplitude of the wave changes, hut also because
the phase changes. Since it is the change in emplitude which is of
chief interest as far as the identifica*ion of the current is con-
cerned, it is important to separate these two effects.

The general wave can be written
h(x,t) = A(x,t) elX(%st)

where A and X are real. For small 5A, §X perturbations away from un-
p=rturbed values AO and Xo, we have

6h _ oA

= + i 8X
LI
Thus
K . utxt) €

A sh o ¢ QLX< A A

B - Re (20 - 1 . . _ ! Ma !

X o2y e -k v [ ko g et ot

t

and X =In (&) = - k_ f UGg-c (e-t"), £1) at

The first term in the amplitude enhancement is an instantaneous effect
and very small. The second termm is a time integrated cffect and de-~
pends on the gradient of the flow.
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In addition to the change in amplitude, the change in wavelength,
frequency, and mean square slope are also of interest. The change in
the wave number &k and the change in the frequency éw may be obtained
from the change in phase 86X through the relations

8k = V(6X) , bw = - 3(8X)/3t .

The mean square slope in m2 is given by the time average of (Vh)2.
The time average is taken over a period of the surface wave, a time
which is short compared with the characteristic variation time of the
surface current. In this case the time average may be expressed in
terms of the complex waves by

In terms of the charge in amplitude and phase, one can then easily
find for the change in mean square slcpe

2 k -+ V86X
dm°  _ 6A ~0
—-— = (2 ' + —y— ) s 14)
my Fo) ko

or, since
k +v86X=k =+ 86k=k_ 0ok,
~0 ~e ~ 0

this can be written as

2

om~ _ , 8(KkA)
2 - * XK
mo o0

Inserting expressions for §X and 6A/R into Eq. (14), one has, finally,

6‘1‘2 }go * 2(,)5,$t) t
VI ~ 3 (ﬁo'v)fgtz - g,g(t-t'), €] at’ .
mo g Yoo
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In order to investigate the magnitude of possible enhancements
of amplitude and slcpe, let us assume that the surface flow U has the
form of a wave propagating with a phase velocity C in a direction
specified by a unit vector n:

dx,t) = Un - x -Ct)

< In this case we have
t
k- U{x,t)
13 _ ~ AR 1 . P ; ’
I RCREILY B R  RC MONE R

-]

and a similar expression for the mean square slope change. Suppose
now we follow a crest in the internal wave which for simplicity we
assume to occur when the phase of U vanishes. Then x is related to

t by
x=Ctp '
and we have .
t
. k - W0
OA_'\O ~ 1 A .A A . oA "-I /
A____Z_E;__-é(;go g)f}go uf(e - g+ (et de’
w

where U’ denotes the derivative of U with respect to its argument.

Surface waves which have these components of the group velocity
in the direction of propagation of the internal wave equal to the
internal waves's phase velocity may experience a large enhancement
from the second term. For these waves

and the enhancements in slcpe and amplitude are
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b = 3 A »
o= sk oDk - won T,

m g
and
- uco)
6A _ ' . Ao .

where T is the time that the surface and internal waves have been in-
teracting. If T is long enough this time-integrated effect will be
appreciable and will dominate the instantaneous first term.

As a particular example, let us take for U a sine wave with wave
number X, frequency Q, and the surface current in the direction of
propagation,

u=Ru sin(x-x-0¢t).

A A
If we denote by 9 the angle between K and ho’ then 6A/A and 5m2/m2
may be written

2 U cos 6 sin T XK{c_cos 6 - C)
m~ _ o 2 g
m2 - C -3 (TKUO) cos 6 [*T XK(c_cos 8§ - C) ] *
g g
and (1s)
sA UO cos 6 . sin T K(cg cos 8 . C)
) cg -2 (TKuo) cos 8 T K(cg cos § - C)

The most faverable case is for waves traveling in the same direction
as the internal waves with cg = C, For these waves, the dominant:
effect is

6m2

A _ _
= - % TKU_ ;g__-s'rxuo.

A
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For waves which travel at an angle with respect to the internal wave
but have their component of cg in the internal wave dJirection equal
to C, there is the same enhancement decreased by a factor 00529.

Waves whose velocity component in the direction of internal wave
propagation is greater or less than C will eventually pull ahead or
lag behind the internal wave. This is indicated mathematically by the
decrease of the bracketed factor in Eq. (15) for large T if g ° cos O

# C’

There will thus be a strong time-integrated amplitude and slope
enhancement for the special class of waves which ride along with the
internal wave. This effect is proportional to the gradient of the
surface current and to the time of interaction. This time, in turn,
will at best be the minimum of the characteristic times of decrease
of the internal wave and the surface wave due to dissipative effects.
If the lesser of these times is long enough, there may be an appreci-
able enhancement.
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I. INTRODUCTION

We shall be concerned with the scattering of electromagnetic
radiation from the ocean surface, with emphasis on frequencies in the
microwave region. In order to simplify our calculaticns we have cho-
sen to study a model in which the electromagnetic wave is taken to be
a scalar field. We believe that such a model brings out all the
essential physical phenomena involved in the scattering process, ex-
cept possibly in scattering from the sea at low angles of elevation.
When the scattering occurs near Brewster's angle, the scattering of
vertically polarized waves should be strongly suppressed, a phenomenon
which our scalar model cannot reproduce. In any case our approxima-
tion scheme for studying scalar waves breaks down at small angles be-
cause of the phenomena of shadowing and multiple reflection.

The actual extension of the theory presented here to the full
problem of vactor electromagnetic waves is perfectly straightforward.
The resulting formulas for polarization, etc. will be given in a fu-
ture, more detailed report. In the following discussion we also
ignore Doppler effects arising from the fact that the ocean surface
is constantly in motion. These effects, which are not believed to be
important in the present context, will also be treated in the later
report.
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IT. SCATITERING FROM THE OCEAN SURFACE

At any instant the air-water interface is given by the surface
z = h(x,y), the origin being so chosen that if we average over many
instants, (h{(x,y)) = 0. We assume that the illuminating radar pulse
is of such a short duration that during the time it is actually inci-
dent on the sea surface, h(x,y) changes Ly a negli¢cible amount. Since
radar pulses are, typically, microseconds long, this approximation
should be excellent. Our problem, then, divides into two parts: (a)
given a plane electromagnetic wave, of wave vector k, incident on a
fixed sea surface z = h(x,y), find the wave scattered in any direction
and (b) find the average power scattered in any direction where the
average is taken over many values of h(x,y) corresponding either to
many different times or many illuminated patches on the sea surface.
Since we are neglecting instantaneous motions of the sea surface, we

can say nothing about possible doppler shifting of the frequency of
the scattered wave.

For frequencies in the microwave region, the index of refraction
of sea water is well represented by

n=ng 1+ io/wng eo)
where n, = 80, o = 3mhos/meter, and 60 is the dielectric constant of
vacuum., The quantity G/wng € = 107/v describes the relative impor-
tance of conduction and displacement currents in the equation of mo-
tion. At microwave frequencies, v = 1010 cps, and the imaginary part
of the index of refraction is totally negligible. Therafore we may
safely think of our problem as that of computing the scattering of

electromagnetic waves from the interface between two purely dielectric .
media with indices of refraction 1 and 80 respectively. -
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Boundary value probiems of this kind can, unfortun~tely, be
solved exactly only if the houndary surface is quite simple: plane,
elliptic, etc. Therefore we sre forced to resort to approximate
methods. In general, there ars two sorts of boundary which admit
simple approximate solutions. In the first case, suppose that the
radius of curvature of the boundary surface is everywhere large com-
pared to the wavelength of the incident radiation. We can then apply
geometrical optics to compute the intensity of scattered radiation.
In the second case, suppose that the deviation, 4, of the surface
from one which has a known solution is everywhere small compared to
the radar wave length A. Then, by a simple form of perturbation the-
ory, the scattering can be computed correct to order A/A (we will
shortly show how this is done). Therefore if the sea surface h(x,y)
can be written as h = hO + hl’ where hl is everywhere small compared
to %, a~d the radius of curvature of h0 is everywhere large compared
to A, we can combine the above two approximation methods to get a
decent solution. Whether or not this can be done clearly depends on
the detailed nature of the sea surface.

At any irstant the sea surface, h(x), can be written as a Fourier
integral h(x) =~/~dE a (k) ™%X e can cbviously make the decompo-

sition h = ho + h. where

1

hy ?Jf dk a(k) eiR'x

k<kc

h1 =J/. dk a(k) eiR~x
k>k

and kc is for the moment arbitrary. We can then show that if kc is
properly chosen the surface ho has a mean radius of curvature which

is large compared with the radar wavelength, while the mean magnitude
of hl is everywhere small compared to the radar wavelength. Since the
sea surface is a random process we can really talk only about the
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mean valuec of the coefficients a(k). All such information is con-

tained in the correlation function

p(x) = (h(x)h(0))
=fd1-< A(k) eﬁ"i

which has been determined experimentally to have the fomm

K, i
p(X) = Cde % elﬁ-x
gk
1
c=2x103,
w

The cutoff kl corresponds to the gravity waves moving with the wind
velocity and the cutoff k2 corresponds to very short (say, imm) cap-

illary waves, The corresponding functions for the surfaces h0 and h,
oL

are then
ke
po(X) = (h (X)h_(0)) = cfdg Ll-z iR %
kl
k2 _—
pl(X) = <h1(>—<)hl(0)> = Cde i’z}f ikx .
k
c

The mean square height H2 of the surface hl is then

Xy

_ _ 3 _2 -2y 23 -2
= 6,(0) = 2an ak/i* = me (1 %-G%) = 207

kC

H2

and the mean square radius of curvature, R?, of the surface ho is
given by
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po(X)

kC
2nC“/. kdk
ky

2 2. .32
nC(k-k2) = 2x10 3kc .

We should like to satisfy simultaneously the conditions H/A << 1 arnd
A/R << 1, where A is the radar wavelength. BAccording to the above
equations H/\ = 0.007xc/x, and /R = 0.29 x/xc, so that if we choose
xc = 6\, we have H/\A = A/R = 0,05, With such small values for the
expansion parametars, we feel safe in computing the scattering from
the surface ho by geometrical optics and in computing the extra effect
of the surface h1 by perturbatiorn: theory. We emphasize that our
ability to make both expansion parameters small simultaneously is a
stroke of good luck depending on the detailed statistical structure
of ocean waves. It probably is not possible for other sorts of ran-
dom surface.

We now have to show how this approximate calculation is carried
out in detail. In order to demonstrate the ideas involved we study
the scattering of a plane scalar wave from a surface h(x,y) which can

be decomposed into two surfaces hb and h, in the manner just described.

1
Once we have solved this problem it is not hard to fold in the com-

plications due to the vector nature of the electromagnetic field.

In a mediuwn of varying dielectric constant n(X), we assume the
wave function ¢ to satisfy

[v2 + k2 n(X)] ¥(X) = 0, k = w/c.

This means that if n(X) has a discontinuity on a surface, then ¥ and
its normal derivative must be continuous across that surface. In the
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case at hand, n(x) takes on either of two constant values 1, or n,

the dielectric constant of seawater, jumping from one value to the
other at the surface z = h(x,y). We then want to find the solution
to this equation when a unit amplitude plane wave, Yip = elE'x,

k = k(cosB, 0, -sinf) i35 incident on the sea surface from above. (See
Fig. 1).

Cerresponding to tne division of the surface z = h(x,y) inte a
part, ho(x,y), with small curvature, and a part with small amplitude,
hl(x,y), we can write n(x) = no(x) + nl(x). no(x) takes on the values
n and 1 and describes the air-sea interface z = ho(x,y). nl(x) takes
on the values 0, *(n-1) and is nonzero only in a smcll region around

the surface z = ho(x,y) as is described in Fig- 2.

Let us suppose that the solution to the scattering problem for
the surface z = ho(x,y) is known and let it be called ?0. Let us also
define 6y by ¥ = ¢o+6$ where ¢ is the desired solution for the surface
z = (hO + hl) (x,y). We can combine the two equations

7% + &% n ()] ¥, = 0
[9% + k2 (n (Z)4n (R (4 +69) = O

to give

2

(e + %% n (O] 81 = K0y NG

This equation, in turn, can be put into integral form if we introduce
the Green's function, Go(i,i'), which is a solution of

(vi + K2 no(i)) Go(i,i') = 6(x-x") .

This allows us to write

84 (%)= -szdx' B (%% ) ny (k) ¥
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- Since ny is nonzerc only in a volume which goes to zero as hl goes to
zerc, 6y is of order hl. To this order, therefore, we can replace ¥,

within the integral, by woz

f
ade

[Eon

59(x) = _k?fdi' 6 (%) (RN (X))

RN

;T To the same order, we can actually replace the volume integral

- by a surface integral over the surface z = hb(x,y). The equations

~ of motion satisfied by ¢O and GO imply that at this boundary surface,
both these functions and their normal derivatives are continuous.
Therefore the effect on the integral of their variation over the small
volume in which ny is nonzero is higher than first order in hl‘ We

can therefore write
- 54(%) = x%(n-1) f 48 6 (%,%/(8)f, (x' (8)) ¥, (X(8))

v where the surface integral is taken over z = ho(x,y), x’(8) is %he
three-dimensional position vector of the element of surface, and ﬁl

is the nomal dis%ance between the surface z = h0 and z = h0+hl

(taken positive or negative according as z = hd+hl lies above or be-
Jow 2 = ho). Finally, it is convenient to convert this into an inte-
gral over the plane surface z = 0, taking p = (x,y) to be the position
vector in that surface

s 840 = -k2(n-2) [ 45 1y (B) G (RR(5)) ¥, (R(H))

where x(p) = (p, h (p)) and h; is exactly the quantity earlier called
hl’ the vertical distance between the two surfaces z = ho and z =

3 h0+h The geometry of the transformation is best explained by Fig.

lo

A 3. Therefore, if we know ?0 and Go on the surface z = ho, we can
3 calculate §¢¥, correct to order hl’
] According to vur assumption, the radius of curvature of ho is

everywhere large compared to the wavelength of the illuminating radi-

ation, so that scattering can safely be computed via geometrical optics.
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In particular, we need to know *o on the surface 2z = ho. Geometrical
optics means that, if we neglect multiple scattering and shadowing,
the field at a point on the surface can be computed by replacing the
curved surface by its local tangent plane and imagining the given
incident wave to be scattering from it., It is easy to show that if
the incident wave is eiﬁ'x, the total field at a plane boundary be-

tween regions with dielectric constants n and 1 is

2cosa iR-x

cost + 4/n 51n§a

¥y =

A
where cost = ﬁ'ﬁ, n being the unit normal to the boundary.

We also need to know Go(i,i') with X' on the surface. From the
equation satisfied by Go’ it is clear that Go(i,i') represents the
total field generated at X’ by placing a unit source at x, given the
boundary specified by no(i). If X' is near the surface, and if we ne-
glect multiple scattering and shadowing, the geometrical optics apprex-
imation to G0 is gotten by replacing the curved surface by its local
tangent plane. The solution for G in the presence of a plane boundary
is well known. If we set X = ﬁ R, take X on the boundary, and let
R+, it becomes

. Y

- . 4

ikk".x 2cosd

4nR , -
cos ' + Jn - sinza

A
2’ being the angle between k' and the local surf ‘s normal.

GO(Q’R,x) =.8

We now can write down our expression for the field &y(X) when X
is far away from the surface:

Rey(K'R) ~ - & (“""/da hy (5)T(@(5))T(a’ ' (3y)eik k) R (B)

where

T(a) = 2cost/(cosx + Jn-sin2a) .
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We are particularly interested in the field scattered back aleng the
A
direction of the incident beam, in which case ﬁ' = -k, and

.2 e
T RGW(-IQR) = '&%ﬁ:ﬁf do hl(‘p') T2((L(B-)} e?lk'x(p) .

It turns out to be convenient, for purposes of computing the
average backscattered power, to recast the expression for &% in a
‘l slightly differenc form. First of all, we note that the reflection

coefficient is a function of cosa = -n-k where ﬁ is the local surface
normal. In turn, ﬁ is a simple function of ﬁﬁho(ﬁ), so that we can
write T = TCﬁBhO(E)). If we introduce the Fourier decompositicn of
hl(B), ﬁl(z), we then have

2 o 3
0 (R) = K (oL f & ) (491255 n_(p)eil 2D B-2ksind hy(5)]

Since the surface ho(E) is one which satisfies the criteria of geo-
metric optics, we can evaluate the integral over p by the method of
staionary phase. This means that the only important contributions
F come from those points p where

) \75 ((2k42)-p -2ksind h_(p)) = O
f N
65 ho(ﬁ) = (2k+1)/2ksing.

flwnny

Therefore we have

L

2 ”
5y(-RR) = 5-‘%{-1-2[ ot fi (1) 12(%) x

f dp exp[i((21'<+1)-B-zksineho)].

ey

The virtue of this expression is that the arguments of T no longer
depend on the specific surface, so that the averaging process is
simplified.

s
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To compute the backscattered power we need (|$ + 6¢|2), where
v is the backscattered field from the surface h s and the average is
over the various possible forms of the sea surface. Since different
Fourier coefficients of the sea surface are statistically independent,
and 51nce 6% depends on hl while # does not, the cross terms of the
form v 6#* vanish upon taking the average Therefore, the average
backscattered power is the sum of two terms, (lv 12) and (|6¢| Y
which we shall compute separately.

It is convenient to define a scattering cross-section in order

to eliminate the distance cf the observation point from the sea surface.

The enerygy density at any point is just I#!Q. If a finite patch of
sea surface, of area A, is illuminated and we observe at X = ﬁ’R, R
very large, then all the energy at x is flowing in the direction ﬁ'.
If the antenna subtends a solid angle AQ, the total received power is
then |¢| R AQ and the received power per unit lllumanafed area is
le 2g2 M/A. We shall define the quantity o = lvl R‘/A, so that an-
tenna power is ¢ A Af.

Let us first compute oy = (|6¢|2)R2/A. If we make the standard
assumptions about the Gaussian nature of the sea surface, and make the
definitions

(h (x)h (0)) = C_(x)
EOREAD) = 5,1) & -1

we find that
o 2 [ 7= iy ed, 2ksE
= (k“(r.-1)/4n) J/.dL Py (M) T (gpgzmp) X

f dr expli(2k+T) -f'-(2ksin9)2(C0(0)-Co(r))]

94




ey R T

posp——
-

e T A R T A TR
5 R T LT -
I YA i

where we should now remember that when we write k we mean k= (kx,ky) =

(kcosH,0). The largest contribution to the integral over T comes in
the neighborhood of 7=0, where we write

Co(r) = hz(l-ar2+ ven)

so that
fdi exP[i(2R+Z).E-(zksine)Z(Co(o)-co(r))] =

J/.df exp[i(2R+l)-i-(2ksine)2a 2] =

— s cxp[-(QR+L)2/4Q(2khsine)2] = £(2k+1)

(Zkhsingd)

We note that in the limit a ~ 0, £f(2k+1) ~ (2n)2 5 (2k+L). 1In fact
a is rather small:

h2a

4
1
-(2/2)7%p (0) = (€/2) f di/i? = e log, (ko/ky)
K

_ -3
= 2x10 loge (xwind/sxradar)

where A\ :ng is the wavelength of those ocean waves whose velocity
equals the wind velocity. For a 10 m/s wind and a 10 com radar wave-
length, we have W = 0.9x10’2. This means that in terms of the dimen-
sionless variable |2k+Z| / 2ksin@ the width of £ is about 0.2 in a
typical situation. This width decreases slowly with wind velocity.

If we ignore the width of f, replacing it with a deltsa function,
we have the simple fonmula

4 2 ~
o, = E—S%:El— T4(0)pl(-2R).
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If we include the effect of the wind broadenlng of f we see that oq
is proportional to the average value of T pl(l) cver a circle of radius
>~ 0.4ksin® in {-space; centered about 1 = -2k = (-2kcos6,0). In the

3& /m and therefore could

undistrubed ocean we know that ;i(l) = 2x10°
actually perform the average, if necessary. If we evaluate the zero-
width approximation to o in the limit n—~ (appropriate for the sea

surface since n = 80); we get
4
= (10~ /4?‘ tan 0

for the backscattering cross-section from the undisturbed sea.

We now must compute o_ = (|y l R®/A. Since §, is the field
generated by that part of the sea surface for which the approximations
of geometrical optics are correct we can adopt the classical results
for scattering light from a Gaussianly roujh surface:

= (nhza (2sin6)4)'lexp(-cot28/ah2)

for backscattering. We note that o, falls off exponentially as §
decreases from mw/2. In fact we can ea51ly see that for 8 & 80°, oy
dominates S while for § ? 80° the reverse is true.

At this point we may reasonably summarize our results: We have
found two basic regimes in radar backscattering; one occurs when the
angle of elevation is large, nearly 900, the other occurs for moder-
ate elevation angles. In the first case, the backscattering cross-
section is z function of ahz, while in the other it is determined by
Ei, the ocean wgve power spectrum, at some appropriate wave number.
The quantity ah®, is just the mean square slope of the ocean waves,
which in turn is an integral over the complete wave power spectrum.
Therefore, the difference between the two regimes is that in one case
we measure Bi, at a point in wave number space while in the other we
measure what ameunts to an average of Si over all wave number space.
This distinction will turn out to be most important in the applications.
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Finally, we would like to point out that the scattering cf polar-
ized radiation from the sea surface may be calculated by much the same
methods, although the fomulas are much more complicated. We shall
refrain from writing them down here since nothing essentially new in
the physics of radar backscattering is introduced.
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IIT. THE EFFECT OF INTERNAL WAVES ON RADAR BACKSCATTERING

As far as the applications considered in this report are con-
cerned, we need to know the effect of an internal wave, over and above
the random background, on the radar return from the sea surface. The

ocean wave heights are in general described by the power spectrum
F(k) where

(h(X)h(0)) =ﬁ12 F(R) eiK-X

-3 -4
with F(K) = 251%—35—— for the standard wind-generated sea. Hartle

and Zachariasen have shown that if an internal wave of phase velocity
C, wave length L, and maximum surface water velocity Vb is present,
then the power spectrum is changed by

2 . =1
SF(K) . T 2nm Vo cos“9 sin(2n TL (Cgcos¢-C)

F(R) L om TL‘l(cgcosqs_C)

where ¢ is the angle between k and the direction of propagation of the
internal wave, Cg = L/g/k is the group velocity of the surface waves
with wave number k, and T . - the time during which these same surface
waves have been acted on by the internal wave. It is convenient to
introduce § = TC/L, which is just T measured in internal wave periods,
and ¢ = V6/C so that

- sin(273(C_cos¢/C-1))
érfg) - 62ﬂ3C082¢ znwzvc cog¢/o?£)
F(k) "ty -

In practical cases, € turns out to be very small. We note that for
small &, 6F/F is uniformly distributed over k-space, while for & >> 1,
98
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6F/F is very sharply concentrated around the curve Cgcos¢ = C, This
turns out tc have a profound effect on the size of the radar return

for different values of d.

We recall that if the angle of elevation, €, of the radar beam
from the horizontal is not too large, the backscattered power is pro-
portional to the average of F(k) over a circle in k-cspace centered at
Ro = (-Zkpag radar
velocity but might typically be 0.1l. Let us suppose that we have

. and 8 so that k_ lies on the curve C_cosé = C.
radar o] g
We now want to compute the ratio 6P/P where P is the radar return from
the undisturbed ocean and P+6P is the radar return from the ocean in
the presence an internal wave. Let Q ([R-ROI) be 1 for |R-Ro| <

ak

cosB,0) and with radius ak , where a Cepends on wind

cleverly chosen k

and z ise.
radar d zero ctherwise. Then

5P _ ﬁf( s F(K) @ (|k-k |
L de F(R) @ (JRK_])

There are two interesting regimes in which we want to calculate
this ratio. First of all, if 2n3(Cgcos¢/C-l) is small through the

region where Q is non-zero, we have 6F = -¢ 2n3cosz¢P and
ég = _e2md cosz¢ .

On the other hand, if & is very large, §F/F — -enc032¢6(cgcos¢/c-l).
With our assumption that EO is centered on the curve Cgcos¢ = C, we
have

&P _ _ gg_cosz¢
P~ a

Because a is small, this ratio can easily be as much as 10e.
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IV, STATISTICAL CONSIDERATIONS

Thus far, we have shown how to calculate the backscattered power
averaged over a statistical ensemble of ocean surfaces. The question
of just what "averaged over an ensemble' means in terms of physical
measurements remains. This will be our next topic.

One way of performing an average is to look repeatedly at dif-
ferent pieces of the ocean surface which are far enough apart to be
statistically independent. The minimum distance between two such
pieces is determined, of course, by the correlation length of those
properties of the ocean surface surface which are important in the
scattering process. Since the specular part of the scattering cross-
section depends only on the mean square slope, the correlation length
relevant for specular reflections is clearly that for slopes, which
turns out to be some tens of centimeters. For Bragg scattering (scat-
tering from waves of a definite wavelength, the dominant process in
backscattering at moderate elevation angles) the high-frequency part,
hl’ of the elevation determmines the scattering. To find the correla-
tion length relevant for Bragg scattering we must, therefore, study
the correlation function

k
I A
p(%-9) = (hy (ROhy (7)) = 25.1%‘_0__.[ dk K-4oike (R-9)

c
Because it contains a factor k"4, the integral on the right is rapidly
convergent and receives most of its contribution from the region
k, s k< 2k . When | (%x-9)| is small compared to Ao = 2nk;l, the ex-
ponential is essentially constant over this region and p(X-y) is of
order 2x10’3k;2. However, if |X-y| is large compared to A,> the ex-
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Thus, we may take the correlation length for Bragg scattering to be
something like Rc which, as pointed out above, will be a few radar
wavelengths.

Actually, the above correlation lengths are so small that they
are of little interest except in very special cases. To see this we
have to understand what happens when a radar looks at the ocean surface.

Suppose a radar illuninates an area A of the ocean surface. Re-
ferring to the above numbers, we see that in general A will be very
large compared to the relevant coherence length squared. Imagine now,
dividing A into patches whose linear dimension is of the order of a
coherence length., We can write the backscattered wave as Z#i where
¢l is that part of the backsca?tered wave which comes from the i-th

patch. Then setting wi = ay el¢i, we have

P = z a;a, ei(¢i‘¢j)
1,3

for the returned power. If we now average P over an ensemble of

statisically independent areas A, the averaged power is

® =3 (aa5 F0i05)) =5 (ad)

1
1,] 1

which follows from the fact that the phases e*? are random.

There are now two questions: (i) What do we mean by independent
areas? and (ii) How many areas are needed to determine (P) to a given
accuracy? The answer to the first question is almost trivial. In
order that the phases ei¢i be uncorrelated, the two areas must be non-
overlapping. We are assuming that the time difference between mea-
surements is less than the decorrelation time of the phases. To
anser the second question, we need the variance of P. Here we appeal
to the well-known fact that for a sum of terms with random phases,
such as in the last equation, the variance is always of the same o™der
as the square of the average, i.e.,
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This means, of course, that cto measure (P) to, say, one part in ten,
we need one hgndred separate areas.

Notice that the above conclusions are independent of the size of
the area illuminated by the radar (so long as its linear dimensions

are large compared to the correlation length). Thus, contrary to one's

first impregsion, the accurscy of a measurement of P does not improve
4s the size of A increases. Also, it is clear that the magnitude of
the small correlation lengths does not enter in & critical w-y.

This perhaps surprising situation arises because a radar is a

coherent source of radiation. Suppose, on the contrary, that the source

of radiation were incoherent. If this were the case, the equation
given on the previocus page for the backscattered power should be re-
placed by

P=y aiajei[ (93467~ (8;+9,)]

i,3

where @{ is the phase of the incident radiation, assumed to vary rap-
idly with time and index i (this is to incorporate thz assumption that
the incident radiation is inccherent). Averaging over a time long
compared to the coherence time of the ¢£ gives

{ 3 = ;‘2
‘P)time ] %; o A
average

The point is ncw, thau the average of ; ag over an ensemble of areas
A gives {P) as before, but the vari ned in £ ai is not of order (P}
but rather of order (P)(Lz/A)'%, where L istthe iarger of the coher-
ence length of the radiation and the relevant coherence length of the
ocean. Thus, for an incoherent source the accuracy of a measurement
does increase with A,
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The reader may wonder why, in the case of a coherent source, we
did not average the power equation over time in order to obtain a
result similar to that just described. The reason is that the time
scale involved is vastly different. If an incoherent source has a
coherence length L, its coherence time is very small, being on the
ordex of L/c, where ¢ is the velocity of light. With a coherent source
the corresponding time is the coherence time of the ocean surface.
This i.s on the order of L'/v, whers L’ is a coherence length for the
ocean and v is a typical wave velocity. It is the large ratio c/v =

109 that makes coherent and incoherent sources so different.

finally, it should be pointed out that measurement of Bragg scat-
tering has some statistical properties which are different from those
of specular reflections. Suppose, for example, that we make many
measurements of specular reflection from a single patch of ocean sur-
face using various wavelengths of incident radiatiorn and angles of
incidence, but completing all the measurements within one coherence
time. The statistics of the measurement have not been improved in
this case. No matter what angle or wavelength we use to measure
specular reflection we are always measuring the same quantity, namely
the mean square slope. Thus we might as well have carried out all the
measurements at the sam2 wavelength and angle, geining no imprcvement
in statistics. Bragg scattering is different, however. By carrying
out the measurement at different angles and wavelengths we are measur-
ing different Fourier coefficients of the correlation function £y-
Since these Fourier components are statistically independent each
measurement gives new information and the statistics can be improved.
As an example, suppose We wish to measure pl(O) which is the Fourier
compenent integrated over 4-space. According to our formulas in Sec-

tion III, scattering at moderate elevation angles samples the Fourier
2

radar 2

is the mean-square slope of the ocean surface. Since there are m

m2 in 4-space, where m2

components of py Over an area of order k
such areas available, we can make m'2 independent measurements whose
sum (which gives pl(O)) will have a variance of m2 times the variance
of a single measurement. Since m“ is of order 10”“ this is a non-

trivial increase in statistical accuracy.
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To detect ripples on the surface of the sea by passive electro-
magnetic mmeans several different wavelengths may be employed. The
question naturally arises as to which wavelength range is most suit-
able. The answer depends not only on the physics of the interaction
of electromagnetic waves with the surface of the ocean but also on
the technology of detectors. In this section a comparison of the
infrared and centimeter wavelength ranges will be made.

Several physical effects contribute to the detection of surface

ripples by electromagnetic waves. Only one of these will be considered

here. A detector pointed at the sea surface receives reflected radi-
ation from different portions of the sky due to the presence of the
ripple. Since the radiance of the sky varies with elevation, the
presence of the ripples will le¢ad to an average variation in the re-
ceived radiance and the detection of the ripples.

Quantitatively, the spectral radiance (power per unit area per

unit solid angle per unit wavelength) W O Ed) received from a

det

direction given by a unit vector gd at wavelength )\ consists of two

parts: (1) the reflected radiance of the sky at a direction Es re-
lated to Ed
the sea itseif. In terms of the spectral radiance of the sea W
that of the sky wsky

rection z, and the normal to the sea surface N we write

by the law of reflection and (2) the emitted radiance of

sea’
» the reflectivity p of sea water, the zenith di-

Wier(MNg) = o0z W o OnzeN) + [1-p(hsz-N)JW_ (M) (1)

The angle of incidence is related to the angle of reflection by

io= (L RW

Ed {
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where I is the unit dyadic. For small sea slopes, N may be written
as z + &, Eq. (1) expanded in powers of ¢ and averaged over the dis-
tribution cf sea slopes. The averages of ¢ and gg¢ may be =Xpressed
in terms of the r.m.s. sea slope, m, by

(e) = - ng

(¢8) = ¥ n° [T - 2] (3)

Expressed in terms of the zenith angle 8 we then have (see Appendix)
for the average variation in received radiance

2
W ow oW
_ 2 sk sky sky 9p
6Wdet()u9) =m [9(—£§X + coth T >+ 56— 09

(4)

2
0 p op
3 - i 4
+ ¥ (Wsky wsea) (662 + cotb 55)]

The sky radiance contrast arises irom two sources--absorption and
elastic scattering. Elastic scattering is important only for wave-
lengths s2u because of the wavelength dependence of the elastic cross
section and the size distribution of the scattering particles. In that
region, the sky contrast arises because on the average the reflected
radiation originates one mean free path length away and there are more
scatterers at low elevations near the horizon than at high elevations
near the zenith. This effect can lead to strong radiance contrasts at
low elevation angles (see Fig. 1) of the order

scale height
(elevation angle) S {for scatterer ///(mean free path)
density

< 1 km/10 km (iw)

Observations at such small angles from airplanes are difrerent because
at typical airplane heights the observation distance is comparable
with the mean free path. We will not consider the sky constant from

elastic scattering further.
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The important factor centributing to the sky radiance contrast
is absorption. On the average the reflected radiance originates one
attenuation distance L()) away at a height L(XA) sin (elevation engle).
Since the temperature of the atmosphere and hence the radiance varies
with height this will lead to a greater radiance at the horizon than at
zenith., The resulting contrast will be small for those wavelengths
where the absorption is large and large when the absorption is small.

Figure 2 shows the experimental sky radiance for various angles
in the infrared range. No contrast is observed in regions of strong
absorption {e.g., Sp and 15p) while the maximum contrast is obtained
in the region about 10p. In figure 3 the sky radiance (and its equiv-
alent temperature) from this data at 10 is plotted as a function of
angie. BAlso plotted on the same graph is the spectral radiance for
1.%4 cm normalized to the same height at € = 90°. Several features are
clear. Because atmospheric absorption is stronger at 10¢ than 1.5 om
the temperature contrast is smaller in the infrared region than in the
microwave. However, because the dependence of radiance on temperature
in the infrared is exponential (hc/AkT ~ S5) while in the microwave it
is linear (hc/AkT ~ 1/50), there is not a great difference in the ra-
diance constrasts.

These curves are the first elements which enter into a calcula-
tion of awdet/wdef. The second element is the reflectivity., This is
estimated from the standard Fresnel formulae., For the A = 1.5 cm the

curves of these quantities are already in hand in Fig. 4

The largest value of 6wdet is obtained at high angles. At a
typical large angle of 8 = 75° we find by crudely estimating the de-
rivatives of these curves

6wdet 2
W~ 0.6 m", m in radians, A = 1.5 cm,.

det

Taking a temperature resolution of 0.2°K we have approximately for
A= 1.54 cm.
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éwdet

inst

2 . .
~ 100 m~, m in radians

where 6winst

is the instrumental radiance resolution,

For the 10p wavelength the index of refraction was computed and
plotted in Fig. 4 using an index of refraction of 1.3. The curves of
wdet for horizontal and vertical polarizations are given in Fig. 5.
Crudely estimating Eq. (4) for 8 = 75° one finds

oW
—nggzw 0.6 m%, m in radians, A = 10p

det

The similarity of this number with that obtained for A = 1.54 cm re-
flects the similarity of the sky contrasts at the two wavelengths.

If we take 6T = 0.01%K for the temperature resolution in the
infrared we find

Winst - (hc ) 8T oxan?
w;iet Adeet Tde‘c
Thus for A = 10u
W, .
o & 3000 n, m in radians.
inst

The conclusion is then that the infrared is favored over micro-
wave radiometer by roughly a factor of 30. The basic reason for this
is that the window at 10p is sufficiently transparent that the sky
radiance contrasts are almost the same at the two wavelengths, while
the resolution of the infrared is better by roughly a factor of 30.
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APPENDIX

DERIVATION OF EQUATION (4)

Let

UZ):J 5:‘: 3

Snell's law is

nxn =
~ I\o

normal to sea surface
direction to observer
direction seen on sky

expressed by

~ ~S

Forming the vector product of both sides with pn,

nx (nxn)-=
nx (o xn)
whence
n - -N =
Since
n-+*n =
~ r\o
we have
n —
~s

o]

x (o xn.)

~

é=
=

- B+ 2 - n) = (- T+ 20m) -1,

The detected radiance is equal to tbe incident radiance

wdet =

where 2z s the

wsky (z - Es)

zenith vector

= Woyy (2 <L+ 200) -

Now for cmall sea slopes o = 2 + §

n_)

(e

¢ = (sinb cosy, sinb sing, cosf-1)

> o

B A LA A |

A Pind sk MR 2
—




g > (Bcosg, fsin?, - 92/2) + 0(93)

6:5

% ¢ Therefore, accurate to second order in 8§, we have

1 Woet = Yoy (2 + [-L+ 222 + 2(z¢ + 62) + 2¢8] - n )

E - = Wy (2 - mg + 22L(z8 + 62) + 28] - 1]

é = wsky (z + n))+ W;ky[Qg . (ze + g2) - N+ 2z - (ee) »

cas o

" 2
r2Wg oz (ze+ez) - 1% ..

The following averages will be needed:

(& =-%®D g

B b s

(eg) = al + b zz
a=1% (8%
1 2
3 a+b=0 b=-%(8%
¥ (02 (L - 22)

A Al X3
o
™
N
"

Using these results, the first bracket in the expansion cf Wdet becomes
on averaging -2 (62) (z - no). The second bracket is equivalent to

2

2le(T +22) - nJ°=2n - (L+322) - ge« (L+22) -1
{ —(92),130'(14«,:%)-(I-zg)-(,§+22)-go

. 2
(6%) n, - (T - 32) * ng

- 8% (1 - (ny - 221 = (6%) sin’y

TP
1
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where 60 is the angle of observation measured from the vertical. Thus,

] W(coseo) + (92) [-ow’ coseo + W sin290]

det
Now
wio @3 Woe s 2 d faw 1
T df sind ~ 7 'sing d6 \dP sind
2
1 d9°W _ cos® dwW
Singd de2 <in0 L)
Thus,
W = W ) (62) EEE + coth oW
det ~ o T ae2 OtV 3§

This computation was made leaving out the reflectivity. Actually,

(z - n_)

Wiet = o(1 + 1) wsky 2 <s

Expanding the reflectivity in the same manner as before,

~
]

p(z + n  + g+ 1))

14 1 14 R 2
p(z . no) + p'(e . no) + % p"(e no) + ..

Including the extra temms in the expression for wdet

= Y . 71 “ . 2
Waet = Lo+ o’ (g ng) + ) p'le + n) ]% wsky

Y pes

/ - .
+ wsky (22 - (ze + €2) - n, + 22 (ee) 0]

v W, Lz - (ze+ gp) - 3032§
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EXTRA TERMS

2 S
W oW
_ 2 sky sky
wdet = wsky + (9%) = + cotB 56

+2p'((g - n)) [z - (28 + g2) - BO]> wgky

o'l n M+ Cp"((g - n)) W

y y

The first average is equivalent to

1, (e (T + 22) * B, ((92>/2) o, - (L - 22) (L + 22) - A,

(8?y/2) n, - (T-22) -1,

((8%)/2) sin®_
The second average is simply ((92)/2) cos eo. The third average is
~0

2 ., 2
EY = \
n (ee)no ({(6°)/2)sin 90

Assembling these results and noting that (62) is equivalent to the
o]
mean-square slope m° within the approximations used here, we obtain

5
2 aQwsk' awsk l
wdet = Wsky + m —a—-e—f—i + coth 8 J
2 W .\ )
m sky opY . 2. 2 )
+ sinza (‘BB (35)51n 8+ (m“/2) cotd (35) wsky

2
2 .2 i 37p cosf 39
+ (m“/4)sin”0 - W
sinZs 82 sinZg 0| SKY
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The net result is that the variation in radiance is given by

n

W W

2 SK sk
swdet m p ——-;—X + cot® —55_2

38~

2

+ igEEX S0l 4 (ywm 98, cots %2
5 3 “Wsky 392 T

This ~xpression accounts for the contribution to the variation in

received radiance due to the first term in Eq. (1). The contribution
of the second term can be obtained by inspection of the above expres-
sion (replacing wsky by W.oa and noting that wsea is independent of 6).

Thus, the contribution of the second term is

2
. _ 2 3% dp
6Vv’det = -(m /4-) wsea -6—87 + cotd 3-6-

Combining these results yields Eq. (4) of the test.
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DECISION THEORY APPLIED TO SENSOR EVALUATION

S. Courtenay Wright
Enrico Fermi Institute for Nuclear Studies,
University of Chicago

j=v
N
[




F SN

Al

T

Sophisticated signal processing is claimed by some of its adve-
cates to make possible remarkable improvements in detection systems.
While this is true in some cases, in others the claims are extravagant.
This note is written to provide a basic criterion for detection that
depends only on hardware capability and by which ultimate performance
limits can be set: limits that can be approached but not surpassed
by astute processing and presentation. The basis for this is the work
of Harris®* on decision theory. The derivation of one of his main re-

sults is abstracted here for completeness.

We will look at the detection problem as a binary decision between
two signal sources dencted I and II, with the signals accompanied by
additive Gaussian noise. For definiteness, take a two-dimensional data
presentation with mean flux densities of HI(x,y) and HII(x,y) for the
sources I and II. The likelihood that a set of flux readings Rl’ R2
...R.n with dispersions ci, cg .
served in response to source I is

. Gi for patches of area &x4, is ob-
J

1

. 1 2 2
L{I) = ;ﬂl ———w—; exp[-(Ri - Hp; 8xAy) /QGi]
= N2m o
i

where R.i is the flux measured at the display point (xi,yi), and HIi =
HI(xi,yi). Similarly, the likelihood of the same readings in response

to source II is

.~ 1 N2 2
L(II) = M —=— exp[-(R; - Hpp; #xby)7/20]]
i=l\[——

omn c?

i
This formulation assumes that the incrementzl area Axdy is sufficiently
large for the cbserved readings Ri to be regarded as statistically

independent.
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Fc. the purpose of this discussion, the relative risks of error
in deciding that source I is present when scurce II is really present,
and vice versa, can be ignhored. Under these conditions, the decision

rule is to select the alternative with the larger likelihood. In terms
of

¥ = 21og[L(I)/L(II)]

the procedure is to decide that I is present if ¥ > 0, and to decide
that IT is present if § < 0. Specifically,

¢ = Zn: (1/02)[-2R. (H Ho.) axdy + (8.2 - H.2)(8x)%(a )?)
V& PR A w S R ¢ y + (B3 - Ay N A,

Now suppose that source I is actually present; then

R.i HIi axdy + ny

with

2 2 _ .
(ni> of = viAxAy

Here, ni represents the additive Gaussian noise, and vi is the

noise variance per unit area. Substituting this into the expressicn
for ¥ yields

by 2
_o@ gy - Hp )My o m2ny (Hpgy - Hpy)
¥1 = 2 v T v
=1 i i i

The mean of §p can be expressed as

[H (x,y) - H (X:V)J2
_ II I ,
I —J[]~ vix,y) dxdy
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The integral is taken over the area of presentation {e.g., the field
of view of display). The variance of ¢I is calculated to be

The probability of correct decision (i.e., that ¢I > 0) is

9
p = (1/J2_n)/ e 2/2 g (1)

-p/L

The probability of a correct decision depends on the single parameter

W/ = () jf(S/N)2 dxdy(z (2)

)
when N denotes the background noise per unit area.

Well-matched processing and data presentation can take full ad-
vantage of the signals provided by detection equipment, but cannot

improve the probability of a correct decision owver that impliied by
Eq. (1) and (2).
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